Online Appendix to Robust Intervention in Networks

Daeyoung Jeong Tongseok Lim Euncheol Shin^{*} February 27, 2025

Abstract

We show that Property B holds if and only if $(\psi^0 + \psi) \notin Z$. We also provide additional sufficient conditions under which Property B holds, along with a graphical example of the two-agent case.

1 Proof of Equivalence

Property B in the main text requires that the solution to the DM's robust optimization problem contains no zero entries (non-negligence condition).

Recall that the objective function $f : \mathbb{R}^n \times \mathcal{B} \to \mathbb{R}$ is defined as

$$f(\mathbf{x}, \mathbf{B}) = \frac{1}{2} \left(\langle \mathbf{x}, \mathbf{M} \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{B} \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{C} \mathbf{x} \rangle - 2 \langle \varphi, \mathbf{x} \rangle + \underbrace{||\mathbf{z}||^2 + ||\mathbf{C}^{\frac{1}{2}} \mathbf{x}^0||^2}_{\text{constant}} \right)$$

where $\varphi = \psi^0 + \psi$ with $\psi^0 = \mathbf{C}\mathbf{x}^0$ and $\psi = \sum_{i=1}^n z_i \mathbf{m}_i$. Define $g_i(\mathbf{x}) = \max_{\mathbf{B}_i \in \mathcal{B}_i} \frac{1}{2} \langle \mathbf{x}, \mathbf{B}_i \mathbf{x} \rangle$ for each $i \in N$, which is convex and has its minimum at **0**. Let $g(\mathbf{x}) = \sum_{i=1}^n g_i(\mathbf{x})$. Let \mathbf{x}^* be defined as

$$\mathbf{x}^* = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{B} \in \mathcal{B}} f(\mathbf{x}, \mathbf{B}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \left[g(\mathbf{x}) + \frac{1}{2} \langle \mathbf{x}, \mathbf{D} \mathbf{x} \rangle - \langle \varphi, \mathbf{x} \rangle + \operatorname{constant} \right],$$

where $\mathbf{D} = \mathbf{M} + \mathbf{C}$. \mathbf{x}^* is determined by the first-order condition, $\varphi \in \mathbf{D}\mathbf{x}^* + \partial g(\mathbf{x}^*)$, where $\partial g(\mathbf{x})$ denotes the set of subgradients of g at \mathbf{x} , defined by

$$\partial g(\mathbf{x}) = \{ \mathbf{u} \in \mathbb{R}^n \, | \, g(\mathbf{y}) - g(\mathbf{x}) \ge \langle \mathbf{u}, \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathbb{R}^n \}.$$

^{*}Daeyoung Jeong: School of Economics, Yonsei University, Seoul, Republic of Korea. Email: daeyoung.jeong@gmail.com; Tongseok Lim: Mitchell E. Daniels, Jr. School of Business, Purdue University, IN, USA. Email: lim336@purdue.edu; Eunchol Shin: KAIST College of Business, Seoul, Republic of Korea. Email: eshin.econ@kaist.ac.kr.

The first order condition implies that \mathbf{x}^* has a zero entry if and only if

$$\varphi \in Z = \{ \mathbf{D}\mathbf{x} + \partial g(\mathbf{x}) \, | \, \mathbf{x} \text{ has a zero entry} \}. \tag{1}$$

Consequently, Property B in the main text is equivalent to the condition $\varphi \notin Z$.

2 Sufficient Conditions with An Example

Roughly speaking, Property B requires that Z is small in \mathbb{R}^n . Z is small if and only if $\max_{i,j} \mathbf{v}_{ij}^2$ is relatively smaller than the eigenvalues of $\mathbf{D} = \mathbf{M} + \mathbf{C}$. To illustrate these points, consider a network of two agents. Then, for each *i*, the subgradient is calculated as

$$\partial g_i(\mathbf{x}) = \begin{cases} \{x_1(\mathbf{v}_{i1}^2, t\mathbf{v}_{i1}\mathbf{v}_{i2})^\mathsf{T} \mid t \in [-1, 1]\} & \text{if } x_1 \neq 0, x_2 = 0, \\ \{x_2(t\mathbf{v}_{i1}\mathbf{v}_{i2}, \mathbf{v}_{i2}^2)^\mathsf{T} \mid t \in [-1, 1]\} & \text{if } x_1 = 0, x_2 \neq 0. \end{cases}$$

Figure 1 illustrates Z under the assumption of $\mathbf{M} + \mathbf{C} = k\mathbf{I}$ for some k > 0 for simplicity. In the left figure, the set { \mathbf{x} has a zero entry} is represented as the union of two colored lines. The blue line represents the set of \mathbf{x} with $x_1 = 0$, and the red line represents the set of \mathbf{x} with $x_2 = 0$. Consider a set-valued function $\mathbf{D} + \partial g : \mathbb{R}^2 \to \mathbb{R}^2$ defined as $(\mathbf{D} + \partial g)(\mathbf{x}) = \mathbf{D}(\mathbf{x}) + \partial g(\mathbf{x})$. In the right figure in Figure 1, the blue region is the image of the blue line { $\mathbf{x} \in \mathbb{R} | x_1 = 0$ }, and the red region is the image of the red line { $\mathbf{x} \in \mathbb{R} | x_2 = 0$ }. Property B requires that φ is not contained in either of the two regions in the right figure. Since k > 0, the union of the two regions is not only strictly contained in \mathbb{R}^2 , but also strictly decreases in size as k increases. The union of the two regions is closed. Moreover, the measure of the union is nonzero. Consequently, Property B does not hold generically, and the interior of the complement of Z is not empty.

Figure 1: Illustration of Z as an image of $\mathbf{D}\mathbf{x} + \partial g(\mathbf{x})$

We now explain how the size of Z is determined. Without loss of generality, let us consider the size of the red region in the right figure. For a given value of x_1 on the horizontal axis in the left figure, the subgradient is a vertical segment in the red region in the right figure. For example, at $\mathbf{x} = (1,0)$, $\mathbf{D}\mathbf{x} + \partial g(\mathbf{x}) = \{(k + \mathbf{v}_{i1}^2, t\mathbf{v}_{i1}\mathbf{v}_{i2})^{\mathsf{T}} | t \in [-1,1]\}$. The height of the segment is determined by the values of \mathbf{v}_{i1} and \mathbf{v}_{i2} . Thus, when other parameters are equal, **Property B** holds if the size of the variances becomes sufficiently small. Similarly, for given values of the variance, Property *B* holds if *k* is sufficiently large. Furthermore, it follows that for a given $\varepsilon > 0$, there exists $\delta > 0$ such that if $\frac{\max_{i,j} \mathbf{v}_{ij}^2}{\text{smallest eigenvalue of } \mathbf{D}} < \delta$, then there exists a modified target $\tilde{\mathbf{z}}$ of \mathbf{z} such that $|\tilde{\mathbf{z}} - \mathbf{z}| < \varepsilon$, and the corresponding optimal intervention \mathbf{x}^* with respect to the new target $\tilde{\mathbf{z}}$ has no zero entry.