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Abstract. The Black-Scholes-Merton model is a mathematical model for the

dynamics of a financial market that includes derivative investment instruments,

and its formula provides a theoretical price estimate of European-style options.

The model’s fundamental idea is to eliminate risk by hedging the option by

purchasing and selling the underlying asset in a specific way, that is, to repli-

cate the payoff of the option with a portfolio (which continuously trades the

underlying) whose value at each time can be verified. One of the most crucial,

yet restrictive, assumptions for this task is that the market follows a geometric

Brownian motion, which has been relaxed and generalized in various ways.

The concept of robust finance revolves around developing models that ac-

count for uncertainties and variations in financial markets. Martingale Opti-

mal Transport, which is an adaptation of the Optimal Transport theory to the

robust financial framework, is one of the most prominent directions. In this pa-

per, we consider market models with arbitrarily many underlying assets whose

values are observed over arbitrarily many time periods, and demonstrates the

existence of a portfolio sub- or super-hedging a general path-dependent deriv-

ative security in terms of trading European options and underlyings, as well as

the portfolio replicating the derivative payoff when the market model yields the

extremal price of the derivative given marginal distributions of the underlyings.

In mathematical terms, this paper resolves the question of dual attainment for

the multi-period vectorial martingale optimal transport problem.
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1. Introduction

The Black-Scholes-Merton model, often referred to as the Black-Scholes model,

is a mathematical framework for calculating the theoretical pricing of options and

other derivatives [7]. It was developed by economists Fischer Black and Myron

Scholes in collaboration with mathematician Robert C. Merton in the early 1970s.

The Black-Scholes-Merton model revolutionized the way options are priced

in financial markets by providing a mathematical formula to determine the fair

value of options based on various factors, and their pricing model has become

a fundamental tool in options trading and valuation. The Black-Scholes-Merton

model combines concepts from mathematics, statistics, and economics to provide

a rigorous framework for understanding option pricing and risk management. As

a result, it influenced subsequent research in financial economics and inspired the

development of more sophisticated models and techniques [18, 23,24,29,47].

The idea of replication, also known as the principle of no-arbitrage, is arguably

the most fundamental concept underlying the Black-Scholes-Merton model. It

states that the value of an option can be recreated by establishing a risk-neutral

portfolio of the underlying asset in such a way that the portfolio replicates the

option’s cash flows and payoffs. This idea has influenced the development of

the efficient market hypothesis and has had a profound impact on the study of

financial economics.

Despite its importance, it is worth noting that the Black-Scholes-Merton model

has certain limitations, such as the assumption of the market following a geomet-

ric Brownian Motion and the assumption of continuous trading. These assump-

tions may not hold in real-world markets, and there have been subsequent models

and refinements that address some of these limitations [12,25,30,39,56].

The concept of robust finance revolves around the development of models and

approaches that account for market uncertainties. It recognizes the limitations

of traditional financial models, which presume exact and accurate information

about the market and its underlying assets, and instead attempts to construct

frameworks that can adapt to the inherent uncertainties and risks in real-world

financial systems [10,19,40,42,49,51].

One of the most renowned and prospering directions is the theory of Martingale

Optimal Transport (MOT), which is an adaptation of the Optimal Transport
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(OT) theory to the robust financial framework. The OT theory, also known as

the theory of Monge-Kantorovich transportation, is a mathematical framework

that deals with the problem of efficiently moving mass from one distribution to

another. OT theory seeks to find the optimal way to transport one distribution

of mass to another while minimizing the cost or distance associated with the

transportation. The theory originated in the 18th century with the works of

mathematicians Gaspard Monge and Leonid Kantorovich, and has since been

developed and extended by various researchers. The importance of OT theory lies

in its wide range of applications across various disciplines, including mathematics,

statistics, economics, physics and computer science [11,14–16,28,32,54,55,58].

The theory of Martingale Optimal Transport is an extension of OT theory that

combines it with the concept of martingales from probability theory. By combin-

ing OT theory with the concept of martingales, MOT extends the applicability

of optimal transportation models to dynamic and stochastic settings. It provides

a valuable tool for understanding and solving transportation problems under un-

certainty, with applications in various fields including finance, risk management,

stochastic control, and data analysis [1, 2, 4, 17,26,31,33–38,46].

One of the most prominent applications of MOT is in mathematical finance

and option pricing. It provides a framework for modeling and valuing derivative

securities in the presence of uncertainty and stochastic dynamics. MOT-based

approaches can be used to analyze optimal hedging strategies and calculate prices

and risk measures for options and other financial derivatives [3, 27,41,43,44].

The OT andMOT are infinite-dimensional linear programming problems, hence

the problem has a dual programming problem. In MOT, the dual problem has an

important interpretation in terms of determining the best sub- or super-hedging

portfolio against a derivative security payout liability. As a result, one of the most

significant concerns in MOT theory has been the topic of dual attainment, which

refers to whether the dual problem attains an appropriate solution [5, 6, 13,45].

While the dual attainment has been well established to be affirmative in OT,

researchers discovered that the added term reflecting trading strategy appearing

in the dual of MOT makes establishing the dual attainment for MOT theory far

more subtle. Specifically, unlike the OT theory, the dual attainment in MOT is

highly sensitive to the spatial dimension, which represents the number of assets

in the financial market. Because many derivative instruments are traded in the
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market and their payoffs are dependent on the values of various underlying assets,

it is critical to understand the dual problem and its solution in a multidimensional

context, i.e., a market with multiple assets as well as derivatives depending on

them. As a result, efforts have been made to comprehend the dual attainment in

the higher-dimensional case [20–22, 33, 48, 52], but a thorough knowledge of this

question appears to be far from its completion. In particular, to the best of the

author’s knowledge, all research articles on the dual attainment of multidimen-

sional MOT assume two future maturities. In OT, this means that there are two

distributions for which we attempt to move mass efficiently from one to the other.

While this is a natural and sufficiently general setting in OT, it represents a sig-

nificant restriction in MOT because it indicates that the reward of the derivative

security under consideration can only depend on the values of the underlyings

at two future maturities. It is desirable, both theoretically and practically, to

investigate the martingale transport theory of price path-dependent derivative

instruments whose reward can depend on arbitrarily many assets and maturities.

The goal of this paper is to establish the dual attainment of the martingale op-

timal transport problem over an arbitrary number of time periods and assets. We

show that there exists a portfolio sub- or super-hedging a path-dependent deriva-

tive security in terms of trading European options and underlyings, such that the

portfolio replicates the derivative payoff when the market model yields the deriva-

tive’s extremal price given marginal distributions of the underlyings. We contend

this is fundamental and relevant given that the price path of many underlying

assets over time frequently affects financial instruments and their payouts.

This paper is organized as follows. In Section 2, we introduce the multi-period

vectorial martingale optimal transport problem. In Section 3, we discuss duality

and the dual attainment result, whose proof is then provided in Section 4.

2. Martingale transport problem with multi assets and periods

Consider the asset price processes (Xt,i)t≥0 in the market indexed by i ∈ [d] :=

{1, 2, ..., d} representing the ith underlying asset. We will not assume in this paper

that the joint probability law of the underlyings, often called as the market model,

is known, because we cannot determine this joint law from market information.

On the other hand, using a standard reasoning by Breeden and Litzenberger [9],

we will suppose that the market can witness the distribution of each price at
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each fixed maturity t > 0, denoted by Law(Xt,i) ∈ P(R), where P(X ) denotes

the set of all probability distributions over X . We consider an arbitrary number

of finite maturity times 0 < T1 < T2 < ... < TN , denote Xt,i := XTt,i and

Xt = (Xt,1, ..., Xt,d), and assume that (Xt)t∈[N ] is a Rd-valued martingale, which

is generally assumed in the financial literature through the concept of the risk-

neutral probability. Now according to the above consideration, we do not assume

that the market model Law(Xt)t ∈ P(RNd) is known, but only the Nd-number of

marginal distributions µt,i := Law(Xt,i) ∈ P(R) are known and fixed. This leads

us to consider the Vectorial Martingale Optimal Transport (VMOT) problem:

Assume the marginals (µt,i)t,i have finite first moment, write µt = (µt,1, ..., µt,d),

µ = (µ1, ..., µN), and X = (X1, ..., XN). We consider the space of Vectorial

Martingale Transports from µt to µt+1, t = 1, ..., N − 1, defined as follows:

VMT(µ) := {π ∈ P(RNd) | π = Law(X), Eπ[Xt+1|Xt] = Xt,(2.1)

Law(Xt,i) = µt,i for all t ∈ [N ], i ∈ [d]}.

Given a cost function c : RNd → R, we define the VMOT problem as

max /minimize Eπ[c(X)] over π ∈ VMT(µ).(2.2)

In finance, the function c is naturally interpreted as a derivative security whose

payoff c(X) is fully determined at the terminal maturity TN by the price path

X = (Xt)t of the d-number of underlyings. In this case, Eπ[c(X)] can be regarded

as a fair price for the derivative security c under the market model π. Because π

cannot be observed in the market, we must take into account all feasible models

VMT(µ) which are consistent with the marginal information µ = (µt,i)t,i. With

this knowledge, the maximum and minimum values in (2.2) can be interpreted

as the upper and lower price bounds for the derivative security c, respectively.

The VMOT problem is distinguished from the (ordinary) optimal transport

problems by the martingale constrant Eπ[Xt+1|Xt] = Xt for all t = 1, ..., N − 1,

which necessitates that every pair of marginals µt,i, µt+1,i must be in convex order :

µt,i ⪯c µt+1,i if µt,i(f) ≤ µt+1,i(f) for every convex function f on R,

where µ(f) :=
∫
f(x)µ(dx), in which case VMT(µ) ̸= ∅ and vice versa, as shown

by Strassen [57]. Thus we will assume µt,i ⪯c µt+1,i for all t ≤ N − 1 and i ∈ [d].
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The VMOT problem belongs to the class of infinite-dimensional linear pro-

gramming, hence the problem has its dual programming problem. When the

primal problem (2.2) is a minimization problem, its dual problem is given by

(2.3) sup
(φ,h)∈Ψ

µ(φ),

where φ = (φ1, ..., φN), φt = (φt,1, ..., φt,d), φt,i : R → R ∪ {−∞}, and µ(φ) :=∑
t,i µt,i(φt,i). Meanwhile, h = (h1, ..., hN) with the convention hN ≡ 0, ht =

(ht,1, ..., ht,d) where ht,i : Rtd → R is a function of (X1, ..., Xt). Finally, (φ, h) ∈ Ψ

means that φt,i ∈ L1(µt,i), ht,i is bounded, and the following inequality holds:

N∑
t=1

d∑
i=1

φt,i(xt,i) + ht,i(x1, ..., xt)(xt+1,i − xt,i) ≤ c(x),(2.4)

where x = (x1, ..., xN) ∈ RNd, xt = (xt,1, ..., xt,d) ∈ Rd represents a price path.

Note that

(2.5) µ(φ) = Eπ

[ N∑
t=1

d∑
i=1

φt,i(Xt,i) + ht,i(X1, ..., Xt)(Xt+1,i −Xt,i)

]
for any π ∈ VMT(µ) and (φ, h) ∈ Ψ, since π has marginals {µt,i}t,i and the

martingale property of π implies Eπ[ht,i(X1, ..., Xt)(Xt+1,i − Xt,i)] = 0. Now if

(2.2) is a maximization problem, its dual problem reads inf(φ,h)∈Ψ µ(φ), with the

inequality (2.4) reversed (and φt,i taking on their values in R ∪ {+∞}).
The dual problem also has a significant interpretation and implication in fi-

nance. Let us assume that a financial firm is obligated to pay c(X) at the terminal

maturity N for a derivative instrument c. To mitigate risk, the firm may consider

purchasing or selling European options φt,i available from the market, the payoff

of which is based solely on the price Xt,i at the maturity t. Furthermore, the

company may consider holding ht,i shares of the ith asset between the t and t+1

maturities, so that its return at time t + 1 is ht,i(X1, ..., Xt) · (Xt+1 − Xt). It is

worth noting that ht,i is a function of all underlying prices up to time t. Then the

left hand side of (2.4) represents the payout of the hedging portfolio (φ, h), and

the inequality (2.4) mandates that the position must subhedge the liability for

all possible market realizations x ∈ RNd. Having stated that, notice the dual of

the maximization problem in (2.2) represents an optimal superhedging problem.
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3. Duality and our contribution

The celebrated duality result asserts, under a mild assumption on c and the

marginals, that the primal and dual optimal values coincide (see e.g. [27,59]):

P (c) : = inf
π∈VMT(µ)

Eπ[c(X)](3.1)

= sup
(φ,h)∈Ψ

µ(φ) =: D(c).

In addition, the primal problem is known to be attained; there exist an optimizer

(VMOT) π that yields Eπ[c(X)] = P (c). Observe the VMOTs describe extreme

market movements in the sense of maximizing or minimizing the fair price of c.

Unlike the primal problem, whose attainment can be easily established by

standard arguments under a mild condition on c,1 establishing dual attainment,

i.e., proving the existence of a suitable form of dual optimizers, turns out to

be a very nontrivial problem, as demonstrated by Brenier’s work [8] on optimal

transport problems. The situation is worse for the martingale optimal transport

problems, where the martingale constraint makes the dual attainment problem

even more complex, as shown by [4–6] even for a single asset setup (d = 1).

Interestingly, these works show that the dual attainment problem frequently boils

down to establishing convergence of a certain sequence of convex potentials.

The difficulty of the dual attainment problem is problematic not only from

a mathematical standpoint, but also from a financial standpoint, because dual

optimizers describe how to (sub-/super-)hedge a particular derivative investment

most effectively, and furthermore, they often provide the most critical information

on the structure of primal optimizers that describe the extreme market models.

Due to its significance, numerous literature addresses the dual attainment, the

majority of which focus on a single asset d = 1 and two period setup N = 2 with

a few exceptions, such as [17,50,53] which investigated duality in a multi-period

with a single asset setup, while [20–22, 33, 48, 52] investigated the structure of

vector-valued martingale transports in a two-period setup. The purpose of this

paper is to establish the dual attainment of the martingale optimal transport

problem over an arbitrary number of time periods and assets, which is funda-

mental and relevant given that financial instruments and their payouts frequently

1This does not imply that the primal optimizers are easy to understand, describe or characterize.
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depend on the price path of many underlyings over time. Specifically, the goal of

this paper is to prove the following result (see Section 4 for irreducibility.)

Theorem 3.1. Let (µt,i)t∈[N ] be an irreducible sequence of marginals on R for

each i ∈ [d]. Let c(x) be a lower semi-continuous cost satisfying |c(x)| ≤
∑

t,i vt,i(xt,i)

for some continuous functions vt,i ∈ L1(µt,i). Then there exists a dual optimizer,

that is a pair of function sequences (φ, h) = (φt,i, ht,i)t∈[N ],i∈[d] that satisfies (2.4)

tightly in the following pathwise sense (but needs not be in Ψ):

N∑
t=1

d∑
i=1

φt,i(xt,i) + ht,i(x1, ..., xt)(xt+1,i − xt,i) = c(x) π − a.s.(3.2)

for every VMOT π which solves the minimization problem in (2.2).

The (φ, h) presented in the theorem is known as a dual maximizer since it is a

solution concept to the problem (2.3), which is dual to the primal minimization

problem. The equality (3.2) indicates that the portfolio composed of a dual

maximizer replicates the derivative security c by yielding the same payout for all

feasible price paths x given by any VMOT π minimizing the price Eπ[c(X)]. And

(2.4) shows the portfolio otherwise subhedges the derivative c for all price paths.

Theorem 3.1 also yields the existence of a dual minimizer such that the portfolio

built of a dual minimizer superhedges an upper semi-continuous c by reversing

the inequality in (2.4), and it replicates c with respect to the primal maximizers.

We emphasize that a dual optimizer does not necessarily belong to Ψ. Studies

showed the dual problem (2.3) is generally not attained within the class Ψ even

when (d,N) = (1, 2) (see [4,6]), unless c satisfies a specific regularity property [5].

Although Ψ can be seen as a natural domain for the dual problem, it is rather

“narrow” as it lacks suitable compactness due to its infinite dimensionality. This

implies that establishing dual attainment is substantially more involved than

establishing duality (3.1), which can usually be derived via standard argument in

functional analysis and variational calculus. In summary, a dual optimizer (φ, h)

needs not be in Ψ, but it does hold that φt,i is real-valued µt,i-almost surely, and

that ht,i is also real valued. Since the marginal distributions {µt,i}t,i are assumed

in the VMOT problem, all of the functions in Theorem 3.1 are essentially real-

valued (and measurable), while no further regularity is imposed a priori.
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4. Proof of Theorem 3.1

When N = 2, [48] proved Theorem 3.1, and one of the most essential ingre-

dients for the proof is the stability of the convex cores {χn}n, which was earlier

recognized and proved when d = 1 in [6]. To describe, we need to explain the

concept of irreducibility of probability distributions µ ⪯c ν on R in convex order.

Two probabilities (with finite first moment) in convex order µ ⪯c ν is called

irreducible if I := {x ∈ R |uµ(x) < uν(x)} is a connected interval and µ(I) =

µ(R), where uµ(x) :=
∫
R |x − y|dµ(y) is called the potential function of µ. Note

that I is open since uµ is continuous. In this case, (I, J) is called the domain of

(µ, ν) where J is the smallest interval satisfying ν(J) = ν(R), that is, J is the

union of I and any endpoints of I that are atoms of ν. Thus in particular, it

holds I = int(J), where int(A) is the interior of A and conv(A) is the convex

hull of A. Note that J can be of the form (a, b], [a, b), (a, b) or [a, b]; in the

first case it holds ν(b) > 0, and in the second ν(a) > 0. And in all cases

I = int(J) = (a, b). Of course, I and J can be (half)-infinite intervals. Roughly

speaking, the irreducibility of µ ⪯c ν means that ν is regularly dispersed from µ.

We underline that irreducibility is a natural and generic property that practically

any pair of probability distributions on R in convex order fulfills, and that even if a

pair is not irreducible, it can be perturbed arbitrarily small to become irreducible.

Now for irreducible pairs (µi, νi)i∈[d] with domains (Ii, Ji), set I = I1 × ...× Id,

J = J1× ...×Jd and µ
⊗ = µ1⊗ ...⊗µd, ν

⊗ = ν1⊗ ...⊗ νd. I is an open rectangle

in Rd, I = int(J), and µ⊗, ν⊗ ∈ P(Rd) are the product measures of µi’s and νi’s

respectively. Now the following was shown in [6] for d = 1 and in [48] for d ≥ 2.

Proposition 4.1. Let (µi, νi)i∈[d] be irreducible pairs of probability distributions

on R with domains (Ii, Ji)i∈[d]. Let a ∈ I, C ∈ R. Consider the following class

of functions Λ = Λ(a, C, µ⃗, ν⃗) where every χ ∈ Λ satisfies the following:

(1) χ is a real-valued convex function on J ,

(2) χ ≥ 0 and χ(a) = 0,

(3)
∫
χd(ν⊗ − µ⊗) ≤ C.

Then Λ is locally bounded in the following sense: for each compact subset K of J ,

there exists M = M(K) such that χ ≤ M on K for every χ ∈ Λ. Furthermore,

for any sequence {χn}n in Λ, there exists a subsequence {χnj
}j of {χn}n and a

real-valued convex function χ on J such that limj→∞ χnj
(x) = χ(x) for all x ∈ J .
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In Theorem 3.1, there are Nd number of marginal distributions µt,i, indexed

by t ∈ [N ] and i ∈ [d], where t represents the time period and i is the martingale

(or financial asset) index. Let (It,i, Jt,i) denote the domain of µt,i ⪯c µt+1,i,

t = 1, ..., N − 1, with the convention J0,i := J1,i and IN,i := JN−1,i. Throughout

the proof, keep in mind that the bounding constant C does not depend on n.

Proof of Theorem 3.1. Step 1. The assumption |c(x)| ≤
∑

t,i vt,i(xt,i) for contin-

uous vt,i ∈ L1(µt,i) ensures P (c) = D(c) in (3.1) (see e.g. [59]). Clearly, a dual

optimizer exists for c(x) iff so does for c̃(x) := c(x)−
∑

t,i vt,i. Thus by replacing

c with c̃, from now on we will assume that c ≤ 0.

As P (c) = D(c) ∈ R, we can find an approximating dual maximizer (φn, hn)n∈N

which consists of real-valued continuous functions φt,i,n ∈ L1(µt,i) and continuous

bounded ht,i,n for every t ∈ [N ], i ∈ [d] and n ∈ N (we assume hN,i,n ≡ 0), such

that the following duality holds:

N∑
t=1

d∑
i=1

φt,i,n(xt,i) + ht,i(x̄t)∆xt,i ≤ c(x) ≤ 0,(4.1)

µ(φn) :=
N∑
t=1

d∑
i=1

∫
φt,i,n(xt,i) dµt,i(xt,i) ↗ P (c) as n→ ∞,(4.2)

where x̄t = (x1, ..., xt), ∆xt,i = xt+1,i−xt,i and ∆xt = xt+1−xt. Denote φ⊕
t,n(xt) =∑d

i=1 φt,i,n(xt,i), ht,n(x̄t) =
(
ht,1,n(x̄t), ..., ht,d,n(x̄t)

)
. Define

χt,n(xt) := sup
x1,...,xt−1

t−1∑
s=1

(
φ⊕
s,n(xs) + hs,n(x̄s) ·∆xs

)
(4.3)

with the convention χ1,n = χN+1,n ≡ 0. Notice χt,n is a convex function on Rd,

since it is a supremum of affine functions of xt. We now show

χt,n ≤ χt+1,n − φ⊕
t,n for all t ∈ [N ] and n ∈ N.(4.4)
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This inequality can be shown as follows:

χt+1,n(xt+1) = sup
x1,...,xt

t∑
s=1

(
φ⊕
s,n(xs) + hs,n(x̄s) ·∆xs

)
≥ sup

x1,...,xt−1
xt=xt+1

t−1∑
s=1

(
φ⊕
s,n(xs) + hs,n(x̄s) ·∆xs

)
+ φ⊕

t,n(xt+1)

= χt,n(xt+1) + φ⊕
t,n(xt+1).

We can now establish the following crucial bound∫
χt,n d(µ

⊗
t − µ⊗

t−1) ≤ C for all t = 2, ..., N and n ∈ N.(4.5)

To see this, by repeated application of (4.4), we have

µ⊗
t (χt,n) ≤ µ⊗

t (χt+1,n)− µ⊗
t (φ

⊕
t,n)

≤ µ⊗
t+1(χt+1,n)− µ⊗

t (φ
⊕
t,n)

≤ µ⊗
t+1(χt+2,n)− µ⊗

t+1(φ
⊕
t+1,n)− µ⊗

t (φ
⊕
t,n)

≤ · · · ≤ −
N∑
s=t

µ⊗
s (φ

⊕
s,n),

where the second inequality is due to µ⊗
t ⪯c µ

⊗
t+1 and convexity of χ. Similarly,

µ⊗
t−1(χt,n) ≥ µ⊗

t−1(χt−1,n) + µ⊗
t−1(φ

⊕
t−1,n)

≥ µ⊗
t−2(χt−1,n) + µ⊗

t−1(φ
⊕
t−1,n)

≥ µ⊗
t−2(χt−2,n) + µ⊗

t−2(φ
⊕
t−2,n) + µ⊗

t−1(φ
⊕
t−1,n)

≥ · · · ≥
t−1∑
s=1

µ⊗
s (φ

⊕
s,n).

The two inequalities combine to give∫
χt,n d(µ

⊗
t − µ⊗

t−1) ≤ −
N∑
s=1

µ⊗
s (φ

⊕
s,n) = −µ(φn)(4.6)

which, in conjunction with (4.2), yields (4.5).

From (4.5), we can obtain local uniform boundedness of {χt,n}n via Proposition

4.1. We need to meet the proposition’s second condition. For this, fix any a ∈ I1,

and let L2,n be an affine functions satisfying L2,n ≤ χ2,n and L2,n(a) = χ2,n(a). By
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linearity, L2,n(x2) = ∇L2,n(x1)·(x2−x1)+L2,n(x1), which allows us to modify (4.1)

by replacing φ⊕
1,n(x1) with φ

⊕
1,n(x1)− L2,n(x1), φ

⊕
2,n(x2) with φ

⊕
2,n(x2) + L2,n(x2),

and h1,n(x1) with h1,n(x1) − ∇L2,n(x1) (∇L2,n is constant and does not depend

on x1). Notice this yields χ2,n ≥ 0 and χ2,n(a) = 0. We can continue subtracting

appropriate linear functions Lt,n, t = 2, ..., N , and obtain

χt,n ≥ 0 and χt,n(a) = 0 for all n ∈ N and t ∈ [N ].(4.7)

Note that the modifications have no effect on the value µ(φn).

To quantitatively state the local bound of χ, let {ϵk}k be a positive decreasing

sequence tending to zero as k → ∞, and write It,i =]at,i, bt,i[ where −∞ ≤
at,i < bt,i ≤ +∞. Then we define the compact interval Jt,i,k := [ct,i,k, dt,i,k] for

t ∈ [N − 1], i ∈ [d] and k ∈ N as follows:

If at,i > −∞, then define ct,i,k by:

µt+1,i(at,i) = 0 ⇒ ct,i,k := at,i + ϵk; µt+1,i(at,i) > 0 ⇒ ct,i,k := at,i;

If bt,i < +∞, then define dt,i,k by:

µt+1,i(bt,i) = 0 ⇒ dt,i,k := bt,i − ϵk; µt+1,i(bt,i) > 0 ⇒ dt,i,k := bt,i;

If at,i = −∞, then ct,i,k := −1/ϵk;

If bt,i = +∞, then dt,i,k := +1/ϵk.

Set J0,i,k := J1,i,k. For example, if µt+1,i(at,i) = 0 and µt+1,i(bt,i) > 0, then

Jt,i,k = [at,i+ϵk, bt,i]. Let ϵ1 be so small so that µt,i(Jt,i,1) > 0, µt+1,i(Jt,i,1) > 0 for

every t, i. Observe that Jt,i,k ↗ Jt,i as k → ∞. Let Jt,k := Jt,1,k×Jt,2,k×...×Jt,d,k.
Then by Proposition 4.1, we deduce there existsMk ≥ 0 for each k ∈ N such that

0 ≤ sup
n
χt,n ≤Mk in Jt−1,k.(4.8)

Step 2. Given an approximating dual maximizer (φn, hn)n∈N (where we recall

that each of φn = (φt,i,n)t,i and hn = (ht,i,n)t,i is in RNd), our goal is to show

pointwise convergence of φt,i,n to some function φt,i µt,i-a.s. as n → ∞, where

φt,i ∈ R ∪ {−∞} is µt,i-a.s. finite. But as noted in [48], there is an obstacle for

the convergence when d ≥ 2, that is, in the duality relation (4.1) one can always

replace (φt,i,n)t,i by (φt,i,n+Ct,i,n)t,i for any constants Ct,i,n satisfying
∑

t,iCt,i,n =

0. This implies that the convergence cannot hold for any approximating dual
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maximizer. In view of this, our goal is to show that there exists a suitable

approximating dual maximizer that yields the almost sure convergence.

To this end, take any approximating dual maximizer (φn, hn)n∈N satisfying

(4.1), (4.2). By repeatedly applying (4.4), we deduce

C ≥ −
N∑
s=1

µ⊗
s (φ

⊕
s,n)

≥ µ⊗
N(χN,n)−

N−1∑
s=1

µ⊗
s (φ

⊕
s,n)

≥ µ⊗
N−1(χN,n)−

N−1∑
s=1

µ⊗
s (φ

⊕
s,n)

= µ⊗
N−1(χN,n)− µ⊗

N−1(χN−1,n) + µ⊗
N−1(χN−1,n)−

N−1∑
s=1

µ⊗
s (φ

⊕
s,n)

= ∥ χN,n − χN−1,n − φ⊕
N−1,n ∥L1(µ⊗

N−1)
+µ⊗

N−1(χN−1,n)−
N−2∑
s=1

µ⊗
s (φ

⊕
s,n)

≥∥ χN,n − χN−1,n − φ⊕
N−1,n ∥L1(µ⊗

N−1)
+µ⊗

N−2(χN−1,n)−
N−2∑
s=1

µ⊗
s (φ

⊕
s,n)

≥ · · · ≥
N∑
s=2

∥ χs,n − χs−1,n − φ⊕
s−1,n ∥L1(µ⊗

s−1)

where the third and sixth inequality is due to the convexity of χ with µ⊗
t ⪯c µ

⊗
t+1,

and the fifth equality is by the nonnegativity χt,n−χt−1,n−φ⊕
t−1,n ≥ 0 from (4.4).

On the other hand, the nonpositivity (4.1) yields

N∑
s=1

(
φ⊕
s,n(xs) + hs,n(x̄s) ·∆xs

)
≤ χN,n(xN) + φ⊕

N,n(xN) ≤ 0

where the first inequality follows by taking supremum over x1, ..., xN−1 (recall

(4.3) and hN,n ≡ 0). Integrating with any π ∈ VMT(µ) yields ∥ χN,n(xN) +

φ⊕
N,n ∥L1(µ⊗

N )≤ −
∑N

s=1 µ
⊗
s (φ

⊕
s,n) ≤ C. We thus conclude

(4.9) ∥ χt+1,n − χt,n − φ⊕
t,n ∥L1(µ⊗

t ) ≤ C for all n ∈ N, t ∈ [N ].

This uniform L1 bound, in conjunction with the local uniform bound (4.8) and

Komlós compactness theorem, can imply the desired almost sure convergence that
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we now present. For this, we will extend the argument given in [48] for two-period

case N = 2 into arbitrary N ≥ 2. For each k ∈ N, let µt,i,k be the restriction of µt,i

on Jt−1,i,k (where J0,i,k := J1,i,k) then normalized to be a probability distribution.

Let µ⊗
t,k = ⊗iµt,i,k, so that µ⊗

t,k(Jt,k) = 1 where Jt,k := ⊗iJt,i,k. Define

vt,i,k,n :=

∫
φt,i,n dµt,i,k, t ∈ [N ], i ∈ [d], k ∈ N, n ∈ N.

For each k ∈ N, we will show that there exists C = C(k) such that

sup
n

∥ φt,i,n − vt,i,k,n ∥L1(µt,i,k) ≤ C.(4.10)

To see this, observe that (4.8), (4.9) and the fact Jt−1,k ⊆ Jt,k imply

∥ φ⊕
t,n ∥L1(µ⊗

t,k)

≤∥ χt+1,n − χt,n − φ⊕
t,n ∥L1(µ⊗

t,k)
+ ∥ χt,n − χt+1,n ∥L1(µ⊗

t,k)

≤ C +Mk =: C

where we used χt+1,n−χt,n−φ⊕
t,n ≥ 0 to get the bound ∥ χt+1,n−χt,n−φ⊕

t,n ∥L1(µ⊗
t,k)

≤ C from (4.9). From this, we obtain the bound∣∣∣∣ d∑
i=1

vt,i,k,n

∣∣∣∣ ≤∥ φ⊕
t,n ∥L1(µ⊗

t,k)
≤ C for all n,(4.11)

where the first inequality is by Jensen’s inequality. Next, because φ⊕
t,n ≤ Mk on

Jt−1,k by (4.4) and (4.8), by taking supremum, we have

d∑
i=1

sup
xt,i∈Jt,i,k

φt,i,n(xt,i) ≤Mk for all n,

and note that clearly vt,i,k,n ≤ supxt,i∈Jt,i,k φt,i,n(xt,i), so in particular,

sup
xt,1∈Jt,1,k

φt,1,n(xt,1) +
d∑

i=2

vt,i,k,n ≤Mk.

Define v̂t,1,k,n := −
∑d

i=2 vt,i,k,n. Since φ
⊕
t,n ≤Mk on Jt−1,k, we have

C ≥ ∥Mk − φ⊕
t,n ∥L1(µ⊗

t,k)
=Mk −

∫
(φt,1,n +

d∑
i=2

vt,i,k,n)dµt,1,k.



MULTI-PERIOD VECTORIAL MARTINGALE OPTIMAL TRANSPORT 15

This implies that supn ∥ φt,1,n − v̂t,1,k,n ∥L1(µt,1,k) is bounded, and then by (4.11),

supn ∥ φt,1,n − vt,1,k,n ∥L1(µt,1,k) is bounded. This yields (4.10).

We can now apply the Komlós lemma, which states that every L1-bounded

sequence of real functions contains a subsequence such that the arithmetic means

of all its subsequences converge pointwise almost everywhere.

Let ṽt,1,k,n = 1
n

∑n
m=1 v̂t,1,k,m, and ṽt,i,k,n = 1

n

∑n
m=1 vt,i,k,m for i ≥ 2. Now for

each k ∈ N, a repeated application of Komlós lemma yields that there exists a

subsequence {φt,i,k,n}n of {φt,i,n}n, such that

(i) {φt,i,k+1,n}n is a further subsequence of {φt,i,k,n}n, and
(ii) φ̃t,i,k,n(xt,i)− ṽt,i,k,n converges µt,i,k - a.s. as n→ ∞,

where φ̃t,i,k,n := 1
n

∑n
m=1 φt,i,k,m. Note that for each k, our choice of a subsequence

index can be made identical for every t and i, since there are finitely many indices

of t, i. Then we select the diagonal sequence

Φt,i,n := φt,i,n,n

and again define

wt,i,k,n =

∫
Φt,i,ndµt,i,k, 2 ≤ i ≤ d,

ŵt,1,k,n = −
d∑

i=2

wt,i,k,n,

Φ̃t,i,n(xt,i) =
1

n

n∑
m=1

Φt,i,m(xt,i),

w̃t,1,k,n =
1

n

n∑
m=1

ŵt,1,k,m,

w̃t,i,k,n =
1

n

n∑
m=1

wt,i,k,m, 2 ≤ i ≤ d.

We finally claim that

Φ̃t,i,n(xt,i)− w̃t,i,1,n converges µt,i − a.s. for all t ∈ [N ], i ∈ [d].(4.12)

Note that the dependence on k has now been removed. To prove the claim, since

{Φt,i,n}n is a subsequence of {φt,i,k,n}n for every k ∈ N, Komlós lemma implies

Φ̃t,i,n(xt,i)− w̃t,i,k,n converges µt,i,k − a.s. for all t and i.(4.13)



16 TONGSEOK LIM

In particular, both {Φ̃t,i,n(xt,i)−w̃t,i,1,n}n and {Φ̃t,i,n(xt,i)−w̃t,i,k,n}n converge µt,i,1

- a.s. as n→ ∞, hence their difference {w̃t,i,1,n − w̃t,i,k,n}n also converges for any

fixed k. With (4.13), this implies (4.12). Finally, the fact that
∑d

i=1 w̃t,i,1,n = 0

allows us to replace the approximating dual maximizer (φn, hn)n by (ψn, h̃n)n,

where ψt,i,n := Φ̃t,i,n(xt,i)− w̃t,i,1,n and h̃t,i,n is a suitable Cesàro mean of a subse-

quence of (ht,i,n)n which is chosen consistently with the selection of Φ̃t,i,n.

Step 3. We will prove the convergence of {χt,n}n defined in (4.3). Let (φn, hn)n

be an approximating dual maximizer such that

(4.14) {φt,i,n}n converges to a function φt,i µt,i − a.s. as n→ ∞.

Now it is unclear that those nice properties χt,n enjoyed in Step 2, e.g., (4.7) or

(4.8), keep holding, because (φn, hn)n that we now consider is a Cesàro mean of

a subsequence of an approximating dual maximizer. But notice that this implies

at least the upper bound in (4.8) continues to hold, that is,

sup
n
χt,n ≤Mk on Jt−1,k.(4.15)

We will show that the normalization of χt,n (4.7) can be restored. Fix any a ∈ I1

as in Step 2, and define φ⊕
t :=

∑
i φt,i. First, (4.14) implies that there exists

at ∈ It for every t ∈ [N ] such that

(4.16) lim
n→∞

φ⊕
t,n(at) = φ⊕

t (at) ∈ R.

In view of (4.4) which gives φ⊕
1,n ≤ χ2,n, this implies

(4.17) inf
n
χ2,n(a1) > −∞.

On the other hand, since I1 = int(J1) and J1,k ↗ J1, for large enough k we have

{a, a1} ⊆ int(J1,k). Now (4.15), (4.17) imply that both χ2,n(a) and ∇χ2,n(a)

are uniformly bounded in n, where ∇χ2,n(a) ∈ ∂χ2,n(a) is a subgradient of

the convex function χ2,n at a. Hence by taking a subsequence, we can assume

that {χ2,n(a)}n and {∇χ2,n(a)}n both converge. Then as in Step 1, define an

affine function L2,n(y) = χ2,n(a) + ∇χ2,n(a) · (y − a), and replace φ⊕
1,n(x1) with

φ⊕
1,n(x1) − L2,n(x1), φ

⊕
2,n(x2) with φ⊕

2,n(x2) + L2,n(x2), and finally h1,n(x1) with

h1,n(x1) − ∇χ2,n(a). This yields χ2,n(a) = ∇χ2,n(a) = 0 for all n, while the a.s.

convergence of φt,i,n and the bound (4.15) are retained. Next, the inequality
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χ3,n ≥ χ2,n + φ⊕
2,n with χ2,n ≥ 0 yields infn χ3,n(a2) > −∞. Thus we can repeat

the argument and achieve the normalization (4.7), while the a.s. convergence of

φt,i,n and the bound (4.15) are still retained. Now (4.5) and Proposition 4.1 yield

limn→∞ χt,n = χt pointwise on Jt−1.

Step 4. We have obtained the almost sure limit functions (φt,i)t,i. We may

define φt,i := −∞ on a µt,i-null set which includes R\ It, so that they are defined

everywhere on R. We will now show there exist functions ht = (ht,i)i : Rtd → Rd

for all t ∈ [N ] with hN ≡ 0, such that

N∑
t=1

(
φ⊕
t (xt) + ht(x̄t) ·∆xt

)
≤ c(x) for all x ∈ RNd.(4.18)

For any function f : Rd → R∪ {+∞} which is bounded below by an affine func-

tion, let conv[f ] : Rd → R ∪ {+∞} denote the lower semi-continuous convex en-

velope of f , that is the supremum of all affine functions l satisfying l ≤ f (If there

is no such l, let conv[f ] ≡ −∞.) We will inductively obtain hN−1, hN−2, ..., h1.

Let us rewrite (4.1) as

N−1∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
≤ c(x)− φ⊕

N,n(xN).(4.19)

Define HN−1,n(x̄N−1, xN) = conv[c(x̄N−1, · )− φ⊕
N,n( · )](xN). We have

N−1∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
≤ HN−1,n(x̄N−1, xN) ≤ c(x)− φ⊕

N,n(xN)

because the left hand side is affine in xN . If we let xN = xN−1, we get

N−2∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
≤ HN−1,n(x̄N−1, xN−1)− φ⊕

N−1,n(xN−1).(4.20)

Notice (4.19) and (4.20) have the same structure. With the conventionHN,n(x) :=

c(x), this allows us to inductively deduce, backward in t,

t∑
s=1

(
φ⊕
s,n(xs) + hs,n(x̄s) ·∆xs

)
≤ Ht+1,n(x̄t+1, xt+1)− φ⊕

t+1,n(xt+1)(4.21)
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for t = 1, ..., N − 1, where

Ht,n(x̄t, xt+1) := conv[Ht+1,n(x̄t, · )− φ⊕
t+1,n( · )](xt+1)(4.22)

with an abuse of notation Ht+1,n(x̄t, xt+1) := Ht+1,n(x̄t+1, xt+1).

Now by dropping n, we analogously define

Ht(x̄t, xt+1) := conv[Ht+1(x̄t, · )− φ⊕
t+1( · )](xt+1)(4.23)

with HN(x) := c(x). Next, since the lim sup of convex functions is convex, in

conjunction with the almost sure convergence, we have

lim sup
n→∞

HN−1,n(x̄N−1, xN) = lim sup
n→∞

conv[c(x̄N−1, · )− φ⊕
N,n( · )](xN)

≤ conv[lim sup
n→∞

(
c(x̄N−1, · )− φ⊕

N,n( · )
)
](xN)

≤ conv[c(x̄N−1, · )− φ⊕
N( · )](xN)

= HN−1(x̄N−1, xN).

This allows us to inductively deduce, for t = 1, ..., N − 1,

lim sup
n→∞

Ht,n(x̄t, xt+1) = lim sup
n→∞

conv[Ht+1,n(x̄t, · )− φ⊕
t+1,n( · )](xt+1)

≤ conv[lim sup
n→∞

(
Ht+1,n(x̄t, · )− φ⊕

t+1,n( · )
)
](xt+1)

≤ conv[Ht+1(x̄t, · )− φ⊕
t+1( · )](xt+1)

= Ht(x̄t, xt+1).

We need to discuss continuity of the convex function xt+1 7→ Ht(x̄t, xt+1). The

following inequality from (4.23)

Ht(x̄t, xt+1) ≤ Ht+1(x̄t+1, xt+1)− φ⊕
t+1(xt+1)

becomes HN−1(x̄N−1, xN) ≤ c(x) − φ⊕
N(xN) when t = N − 1. Then the µ⊗

N -

a.s. finiteness of φ⊕
N gives, by convexity, HN−1(x̄N−1, xN) < ∞ if xN ∈ JN−1.

Backward induction in t then gives Ht(x̄t, xt+1) < ∞ if xt+1 ∈ Jt. This implies

that for any x̄t ∈ Rtd, if there exists y0 ∈ Rd such that Ht(x̄t, y0) > −∞, then

y 7→ Ht(x̄t, y) is real-valued thus continuous in Jt. Now (4.21), (4.22) gives

φ⊕
1,n(x1) + h1,n(x1) ·∆x1 ≤ H1,n(x1, x2) ≤ H2,n(x1, x2, x2)− φ⊕

2,n(x2).
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Letting x2 = x1 gives φ⊕
1,n(x1) ≤ H1,n(x1, x1). From this and the almost sure

convergence, taking lim sup yields

φ⊕
1 (x1) ≤ H1(x1, x1) and H1(x1, x2) ≤ H2(x1, x2, x2)− φ⊕

2 (x2).

Set At := {xt ∈ Rd |φ⊕
t (xt) ∈ R}, t ∈ [N ], and note that At ⊆ It. Since x2 7→

H1(x1, x2) is continuous in J1 for every x1 ∈ A1, the subdifferential ∂H1(x1, · )(x2)
is nonempty, convex and compact for every x2 ∈ I1 = int(J1). This allows us to

choose a measurable function h1 : A1 → Rd satisfying h1(x1) ∈ ∂H1(x1, · )(x1).
Then for x1 ∈ A1, we have

φ⊕
1 (x1) + h1(x1) · (x2 − x1) ≤ H1(x1, x1) + h1(x1) · (x2 − x1)

≤ H1(x1, x2)

≤ H2(x1, x2, x2)− φ⊕
2 (x2).

In particular, for x1 ∈ A1 and x2 ∈ A2, it holdsH2(x1, x2, x2) > −∞. Hence again

we can choose h2 : A1 × A2 → Rd that satisfies h2(x1, x2) ∈ ∂H2(x1, x2, · )(x2).
Then for every x1 ∈ A1 and x2 ∈ A2, we have

φ⊕
1 (x1) + φ⊕

2 (x2) + h1(x1) · (x2 − x1) + h2(x1, x2) · (x3 − x2)

≤ H2(x1, x2, x2) + h2(x1, x2) · (x3 − x2)

≤ H2(x1, x2, x3)

≤ H3(x1, x2, x3, x3)− φ⊕
3 (x3).

By induction in t, we obtain ht : A1 × · · · × At → Rd (with hN ≡ 0), satisfying

(4.18) as desired. We may define ht = 0 in Rtd \ A1 × · · · × At, noting that the

left hand side of (4.18) is −∞ if xt /∈ At for some t.

Step 5. We will show that for any functions ht : Rtd → Rd, t = 1, ..., N with

hN ≡ 0 satisfying (4.18) (whose existence was shown in Step 4), and for any

minimizer π∗ for the problem (2.2), it holds

N∑
t=1

(
φ⊕
t (xt) + ht(x̄t) ·∆xt

)
= c(x), π∗ − a.s..(4.24)
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In other words, every minimizer π∗ is concentrated on the contact set

Γ :=

{
x ∈ RNd

∣∣∣∣ N∑
t=1

(
φ⊕
t (xt) + ht(x̄t) ·∆xt

)
= c(x)

}
whenever {ht}t is chosen to satisfy (4.18). This will complete the proof.

Recall φt,i,n → φt,i µt,i-a.s. and χt,n → χt in Jt−1 where χt,n is defined in (4.3)

with χt being its limit. For any π ∈ VMT(µ) (not necessarily an optimizer), we

have c ∈ L1(π) by the assumption of Theorem 3.1. We claim:

lim sup
n→∞

∫ N∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
dπ(4.25)

≤
∫ N∑

t=1

(
φ⊕
t (xt) + ht(x̄t) ·∆xt

)
dπ.

To see how the claim implies (4.24), let π∗ be any minimizer for (2.2) (which

exists by the assumption on c). Then P (c) =
∫
c dπ∗, hence

P (c) = lim
n→∞

∫ N∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
dπ∗

≤
∫ N∑

t=1

(
φ⊕
t (xt) + ht(x̄t) ·∆xt

)
dπ∗

≤
∫
c(x) dπ∗ = P (c)

hence equality holds throughout. Notice that this implies (4.24).

To prove (4.25), we will extend the argument given in [6], [48] into the cur-

rent multi-period vector-valued setting. Fix any π ∈ VMT(µ). Denoting π =

Law(X) where X = (X1, ..., XN) is an Rd-valued martingale under π, we let

πt := Law(Xt). Then as in Step 2 (but using πt ⪯c πt+1 instead of µ⊗
t ⪯c µ

⊗
t+1),

by (4.2), (4.4), we have (cf. (4.9))

(4.26) ∥ χt+1,n − χt,n − φ⊕
t,n ∥L1(πt) ≤ C for all n ∈ N, t ∈ [N ].
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From this, as φ⊕
t,n → φ⊕

t and χt,n → χt, we deduce by Fatou’s lemma,

χt+1 − χt − φ⊕
t ∈ L1(πt), and

lim sup
n→∞

∫
(φ⊕

t,n + χt,n − χt+1,n) dπt ≤
∫
(φ⊕

t + χt − χt+1) dπt,

recalling χ1,n = χN+1,n ≡ 0 and πt(Jt−1) = 1. This allows us to deduce

lim sup
n→∞

∫ N∑
t=1

(
φ⊕
t,n(xt) + ht,n(x̄t) ·∆xt

)
dπ

= lim sup
n→∞

∫ N∑
t=1

(
φ⊕
t,n(xt) + χt,n(xt)− χt+1,n(xt)

− χt,n(xt) + χt+1,n(xt) + ht,n(x̄t) ·∆xt
)
dπ

≤
N∑
t=1

∫ (
φ⊕
t + χt − χt+1

)
dπt(4.27)

+ lim sup
n→∞

∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπ,

since
∑N

t=1 χt,n(xt) =
∑N

t=1 χt+1,n(xt+1). Now denote X̄t = (X1, ..., Xt), π
t :=

Law(X̄t) ∈ P(Rtd). Then we can write πt+1 = πx̄t ⊗ πt, where πx̄t ∈ P(Rd) is

the conditional distribution of Xt+1 given X̄t = x̄t under the martingale law π.

Martingale property means that
∫
y dπx̄t(y) = xt. For each t, choose a sequence
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of functions ξt,n : It → Rd satisfying ξt,n(xt) ∈ ∂χt+1,n(xt). Then we can compute∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπ

=

∫∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπx̄N−1

(xN)dπ
N−1(x̄N−1)

=

∫ (∫ (
χN,n(xN−1)− χN,n(xN) + hN−1,n(x̄N−1) ·∆xN−1

)
dπx̄N−1

(xN)

+
N−2∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

))
dπN−1(x̄N−1)

=

∫ (∫ (
χN,n(xN−1)− χN,n(xN) + ξN−1,n(xN−1) ·∆xN−1

)
dπx̄N−1

(xN)

+
N−2∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

))
dπN−1(x̄N−1),

where the last equality is due to the martingale property∫
hN−1,n(x̄N−1) ·∆xN−1 dπx̄N−1

(xN)(4.28)

=

∫
ξN−1,n(xN−1) ·∆xN−1 dπx̄N−1

(xN)

= 0.

Furthermore, by definition of ξ, we have

χN,n(xN−1)− χN,n(xN) + ξN−1,n(xN−1) ·∆xN−1 ≤ 0.

This allows us to further disintegrate πN−1 = πx̄N−2
⊗ πN−2 and apply the same

argument. By repeating, we obtain∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπ

=

∫
· · ·

∫ (
χN,n(xN−1)− χN,n(xN) + ξN−1,n(xN−1) ·∆xN−1

)
dπx̄N−1

(xN)

+
(
χN−1,n(xN−2)− χN−1,n(xN−1) + ξN−2,n(xN−2) ·∆xN−2

)
dπx̄N−2

(xN−1)

+ · · ·+
(
χ2,n(x1)− χ2,n(x2) + ξ1,n(x1) ·∆x1

)
dπx̄1(x2)dπ

1(x1).
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Since χt+1,n(xt)−χt+1,n(xt+1)+ ξt,n(xt) ·∆xt ≤ 0 for all t, repeated application of

Fatou’s lemma allows lim sup to continue to penetrate into the innermost integral.

Along the way, we also use the inequality lim sup(an+bn) ≤ lim sup an+lim sup bn.

This eventually yield

lim sup
n→∞

∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπ

≤
∫

· · ·
∫ (

χN(xN−1)− χN(xN) + ξN−1(xN−1) ·∆xN−1

)
dπx̄N−1

(xN)

+
(
χN−1(xN−2)− χN−1(xN−1) + ξN−2(xN−2) ·∆xN−2

)
dπx̄N−2

(xN−1)

+ · · ·+
(
χ2(x1)− χ2(x2) + ξ1(x1) ·∆x1

)
dπx̄1(x2)dπ

1(x1)

for some ξt(xt) ∈ ∂χt+1(xt) which is a limit point of the bounded sequence

{ξt,n(xt)}n. Lastly, the martingale property (4.28) allows us to substitute ξt(xt)

back to ht(x̄t) and get

lim sup
n→∞

∫ N−1∑
t=1

(
χt+1,n(xt)− χt+1,n(xt+1) + ht,n(x̄t) ·∆xt

)
dπ

≤
∫

· · ·
∫ (

χN(xN−1)− χN(xN) + hN−1(x̄N−1) ·∆xN−1

)
dπx̄N−1

(xN)

+
(
χN−1(xN−2)− χN−1(xN−1) + hN−2(x̄N−2) ·∆xN−2

)
dπx̄N−2

(xN−1)

+ · · ·+
(
χ2(x1)− χ2(x2) + h1(x̄1) ·∆x1

)
dπx̄1(x2)dπ

1(x1)

=

∫ N−1∑
t=1

(
χt+1(xt)− χt+1(xt+1) + ht(x̄t) ·∆xt

)
dπ.

Finally, in (4.27) we can combine the integrals which then yields the claim (4.25),

hence the theorem. □
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