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Abstract. Lloyd Shapley’s cooperative value allocation theory stands as a central

concept in game theory, extensively utilized across various domains to distribute re-

sources, evaluate individual contributions, and ensure fairness. The Shapley value

formula and his four axioms that characterize it form the foundation of the theory.

Traditionally, the Shapley value is assigned under the assumption that all players

in a cooperative game will ultimately form the grand coalition. In this paper, we rein-

terpret the Shapley value as an expectation of a certain stochastic path integral, with

each path representing a general coalition formation process. As a result, the value

allocation is naturally extended to all partial coalition states. In addition, we provide

a set of five properties that extend the Shapley axioms and characterize the stochastic

path integral. Finally, by integrating Hodge calculus, stochastic processes, and path

integration of edge flows on graphs, we expand the cooperative value allocation the-

ory beyond the standard coalition game structure to encompass a broader range of

cooperative network configurations.
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1. Introduction

Lloyd Shapley’s value allocation theory for cooperative games has been one of the

most central concepts in game theory. Shapley value is widely used in many fields,

including economics, finance, and machine learning, to allocate resources, assess indi-

vidual agent contributions, and determine the fairness of payouts. Among many excel-

lent treatises on Shapley value, we refer to a recent treatise by Algaba et al. (2019),

in which various authors discuss modern applications of the Shapley value to various

game-theoretic and operations-research problems including genetics, social choice and

social network, finance, politics, tax games, telecommunication and energy transmission
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networks, queueing problems, group decision making, spanning trees, and even aircraft

landing fees problem. Recently, researchers have started to utilize the Shapley value

in diverse fields such as machine learning (Ghorbani and Zou, 2019; Mitchell et al.,

2022; Rozemberczki et al., 2022; Schoch et al., 2022), medicine (Rodŕıguez-Pérez and

Bajorath, 2019; Smith and Alvarez, 2021), and sustainable energy (Pang et al., 2021).

This shows that Shapley’s cooperative value allocation theory remains a vibrant area

of research, applied across various contexts, and continues to inspire researchers.

The Shapley value possesses two notable facets: Shapley’s renowned value allocation

formula and his four defining axioms. These axioms are significant as they establish a

framework of fairness criteria for evaluating the worth of a cooperative game and the

individual contributions of players. By adhering to these axioms, the distribution of

value within a game is perceived to be fair, transparent, and intuitively sensible. Given

that the Shapley value emerges as the unique outcome that satisfies these axioms, it

emerges as a compelling solution for value allocation in cooperative games. Further-

more, the Shapley formula holds significance as it provides a mathematical method for

computing the value of a cooperative game and the contributions of individual players.

This formula determines each player’s marginal contribution to the overall game value

by considering all potential permutations of player coalitions. With a range of desirable

properties inherited from the Shapley axioms, the Shapley formula is widely embraced

as the preferred approach for evaluating individual player performance and distributing

the value of a cooperative game.

In a coalitional TU game v, the Shapley value can be assigned under the assumption

that all players will eventually form the grand coalition, and the Shapley axioms and

formula are then used to determine a fair allocation. In other words, Shapley value does

not address how to properly assess individual player contribution and allocate the value

of a cooperative game when the players form any non-grand, but partial coalition state.

While the Shapley value applied for each subgame of v could allocate the value v(T )

assigned to the coalition T ⊊ N , the formula implicitly assumes that the coalition only

grows towards the target T , thereby failing to fully capture the entire game structure.

As argued by Sprumont (1990), it is essential not only to determine the allocation of

the grand coalition value v(N) but also to establish how to allocate the value of every

coalition T in cases where players do not fully cooperate and T is eventually formed.

The objective of this study is to extend the Shapley value allocation theory to a

broader cooperative framework. Specifically, applying this new theory to a coalitional

TU game enables the generation of value allocations at each partial coalition state,

where the allocation at the grand coalition coincides with the Shapley value.
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To comprehensively depict the evolution of partial coalitions, we consider a coalition

formation process where players can both join and depart from existing coalitions until

the desired coalition is achieved. This approach offers a more realistic portrayal of

coalition formation processes and serves as the inspiration for the average path integral

value allocation formula, which extends the Shapley formula.

Furthermore, as we develop the new allocation theory using Hodge calculus, stochas-

tic processes, and path integration on graphs, it becomes apparent that this general-

ization should not be confined to the coalition game graph framework. Consequently,

we introduce the f -Shapley value, a versatile allocation scheme applicable to any co-

operative network, providing allocation values at any stage of cooperation. Finally,

we demonstrate how the f -Shapley value can be effectively computed on any graph,

assuming that the underlying cooperative process adheres to a natural property.

The structure of this paper is outlined as follows. In Section 2, we provide a review

of Shapley’s cooperative value allocation theory. Section 3 introduces our extension of

the Shapley formula via the random coalition process. In Section 4, we present five

properties characterizing the extended value allocation formula. Section 5 introduces

the f -Shapley value by utilizing arbitrary edge flows as players’ marginal value. Section

6 extends our value allocation framework to any cooperative network. In Section 7, we

demonstrate how Hodge calculus can be applied to compute the new value allocation.

Section 8 provides concluding remarks, while Section 9 offers additional proofs.

2. Review of Shapley axioms and the Shapley formula

We commence by revisiting the renowned Shapley value allocation theory (Shapley

(1953)), which remains a source of inspiration for researchers across diverse fields.

To begin, let N = {1, 2, ..., n} represent the set of players of the coalition games

GN = {v : 2N → R | v(∅) = 0}.

A coalition game (also called a characteristic function) v is a function on the subsets

of N , where each S ⊆ N represents a coalition of players in S, and v(S) represents the

value assigned to the coalition S, with the null coalition ∅ receiving zero value. Given

v ∈ GN , Shapley considered the question of how to split the grand coalition value v(N),

known as the Shapley value. It is determined uniquely by the following result.

Theorem 2.1 (Shapley (1953)). There exists a unique allocation v ∈ GN 7→
(
ϕi(v)

)
i∈N

satisfying the following conditions:

· efficiency:
∑

i∈N ϕi(v) = v(N).
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· symmetry: v
(
S ∪ {i}

)
= v

(
S ∪ {j}

)
for all S ⊆ N \ {i, j} yields ϕi(v) = ϕj(v).

· null-player: v
(
S ∪ {i}

)
− v(S) = 0 for all S ⊆ N \ {i} yields ϕi(v) = 0.

· linearity: ϕi(αv + α′v′) = αϕi(v) + α′ϕi(v
′) for all α, α′ ∈ R and v, v′ ∈ GN .

Moreover, this allocation is given by the following explicit formula:

(2.1) ϕi(v) =
∑

S⊆N\{i}

|S|!
(
|N | − |S| − 1

)
!

|N |!

(
v
(
S ∪ {i}

)
− v(S)

)
.

The four terms denote different aspects of the allocation. Specifically, [efficiency] in-

dicates that the value obtained by the grand coalition is fully distributed among the

players; [symmetry] indicates that equivalent players receive equal amounts; [null-player]

indicates that a player who contributes no marginal value to any coalition receives noth-

ing; and [linearity] indicates that the allocation is linear in terms of game values. The

four conditions outlined above are known as the Shapley axioms, the vector
(
ϕi(v)

)
i∈N

is referred to as the Shapley value, and (2.1) is denoted as the Shapley formula.

The Shapley formula (2.1) can be rewritten as follows: Suppose the players form the

grand coalition by joining, one-at-a-time, in the order defined by a permutation σ of

N . That is, player i joins immediately after the coalition Sσ
i =

{
j ∈ N : σ(j) < σ(i)

}
has formed, contributing marginal value v

(
Sσ
i ∪{i}

)
− v(Sσ

i ). Then ϕi(v) is the average

marginal value contributed by player i over all |N |! permutations σ, that is,

ϕi(v) =
1

|N |!
∑
σ

(
v
(
Sσ
i ∪ {i}

)
− v(Sσ

i )
)
.(2.2)

The well-known glove game below explains the formula (2.2) in a simple context.

Example 2.1 (Glove game). Let |N | = 3. Suppose player 1 has a left-hand glove,

while players 2 and 3 each have a right-hand glove. A pair of gloves has value 1, while

unpaired gloves have no value, i.e., v(S) = 1 if S ⊆ N contains player 1 and at least

one of players 2 or 3, and v(S) = 0 otherwise. The Shapley values are:

ϕ1(v) =
2
3
, ϕ2(v) = ϕ3(v) =

1
6
.

This is easily seen from (2.2): player 1 contributes marginal value 0 when joining the

coalition first (2 of 6 permutations) and marginal value 1 otherwise (4 of 6 permuta-

tions), so ϕ1(v) =
2
3
. Efficiency and symmetry yield ϕ2(v) = ϕ3(v) =

1
6
.

We note that the Shapley value can be readily applied to each coalition T ⊆ N

by employing the Shapley formula to the subgame v
∣∣
T
1. This allocations scheme is

1v
∣∣
T
: 2T → R denotes the restriction of v to the subsets of T , i.e., v

∣∣
T
(S) = v(S) for all S ⊆ T .
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Figure 1. Coalition game graph for N = 2 and 3. Each vertex of the
cube corresponds to a coalition. The vertex (1, 0, 1), for example, corre-
sponds to the coalition {1, 3}, (0, 1, 1) to {2, 3}, and so on.

termed the extended Shapley value. In the subsequent sections, we explore an alternative

cooperative value allocation scheme that seamlessly extends to all coalitions 2N and

differs fundamentally from the Shapley value for partial coalitions T ⊊ N .

3. Extension of the Shapley value via random coalition processes

Before delving into our generalization of the Shapley value to various setups, let us

initially conceptualize the Shapley value as the expected outcome of a random coalition

formation process. Consider the hypercube graph, or coalition game graph G = (V , E),
where V denotes the set of nodes and E the set of edges. This graph is defined by

(3.1) V := 2N , E :=
{(

S, S ∪ {i}
)
∈ V × V | S ⊆ N \ {i}, i ∈ N

}
.

Notice that each coalition S ⊆ N can correspond to a vertex of the unit hypercube in

RN . We assume that each edge is oriented in the direction of the inclusion S ↪→ S∪{i}.
We also define the set of reverse (or negatively-oriented) edges

(3.2) E− :=
{(

S ∪ {i}, S
)
∈ V × V | S ⊆ N \ {i}, i ∈ N

}
.

The edges in E are termed forward/positively-oriented edges. We set E = E ∪ E−.
Next, recall that in the Shapley formula (2.2), the coalition formation is supposed

to be only increasing, with each step resulting in a player joining a given coalition.

In contrast, let us consider a random coalition formation process, described by the

canonical Markov chain (Xt)t∈N0 (N0 := N∪{0}) on the coalition space V in (3.1) with

X0 = ∅, equipped with the transition probability pS,T from a state S to T as follows:

pS,T := 1/|N | if T ∼ S, pS,T := 0 if T ̸∼ S.(3.3)

In other words, the process (Xt)t∈N0 is an unbiased random walk on the hypercube

graph, describing the canonical coalition progression in which every player has an equal
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Figure 2. Examples of Shapley’s coalition path and our general coali-
tion path. The path in this example has no loops, but in general, our
coalition path is allowed to have an arbitrary number of loops.

chance of joining or leaving the current coalition state at any time. We emphasize that

the coalition formation process now allows a player to not only join but also leave the

current coalition, i.e., the transition from S to S \ {i} is possible.

Let (Ω,F ,P) denote the underlying probability space for formality. For each T ∈ V
and a sample coalition path ω ∈ Ω, let τT = τT (ω) ∈ N denote the first (random) time

the coalition process
(
Xt(ω)

)
t
visits T , that is, XτT (ω) = T and Xt(ω) ̸= T for all

t ≤ τT − 1. Now given a coalition game v ∈ GN , the total contribution of player i along

the sample coalition path ω traveling from ∅ to T can be calculated as

(3.4) Ii(v, T ) = Ii(v, T )(ω) :=

τT (ω)∑
t=1

∂iv
(
Xt−1(ω), Xt(ω)

)
,

where for each i ∈ N , the partial differential ∂iv : E → R of a game v is defined as

(3.5) ∂iv
(
S, S ∪ {j}

)
:=

v(S ∪ {i})− v(S) if j = i,

0 if j ̸= i,

and ∂iv
(
S ∪ {j}, S

)
:= −∂iv

(
S, S ∪ {j}

)
. Notice that ∂iv represents the marginal con-

tribution of player i to the game v in both directions of joining and leaving. Thus, given

that the coalition has progressed to T along the path ω, (3.4) represents player i’s total

marginal contribution throughout the progression. This in turn implies that the value

function given by the following average path integral

(3.6) Φi(v, T ) := E[Ii(v, T )] =

∫
Ω

Ii(v, T )(ω) dP(ω)

represents player i’s expected total contribution given the state advances from ∅ to T .

Now our interpretation of the Shapley value as the expected outcome of the random

coalition formation process is stated as follows.
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Theorem 3.1. The Shapley value and the value function (Φi)i∈N evaluated at the grand

coalition coincide. That is, ϕi(v) = Φi(v,N) for every v ∈ GN and i ∈ N .

Theorem 3.1 shows the Shapley value ϕi(v) can be interpreted as the player i’s ex-

pected total contribution, thus her fair share, if the coalition process ends at the grand

coalition and the player i’s marginal contribution for each transition is given by ∂iv.

The summation formulas in (2.2) and (3.6), on the other hand, appear quite different.

While (2.2) consists of a finite sum along |N |! paths in increasing order driven by

permutations σ, the sum in (3.6) is infinite and takes into account all possible paths ω.

Example 3.1. We demonstrate how to directly calculate the value (3.6) for a gen-

eral two-person game. We denote v1 = v({1}), v2 = v({2}), and v12 = v({1, 2}) for

convenience. First, the Shapley formula (2.2) clearly yields

ϕ1(v) =
1
2
(v1 + v12 − v2), ϕ2(v) =

1
2
(v2 + v12 − v1).

To calculate Φ1(N) and Φ2(N), note that sample paths from ∅ to N = {1, 2} can have

lengths (i.e. number of transitions) 2l, l ∈ N. We may enumerate sample paths by their

lengths, and calculate the contribution function I1, I2 as follows:

Path ω I1(ω) I2(ω)

(∅, {1}, {1, 2}) v1 v12 − v1

(∅, {2}, {1, 2}) v12 − v2 v2

(∅, {1}, ∅, {1}, {1, 2}) v1 v12 − v1

(∅, {1}, ∅, {2}, {1, 2}) v12 − v2 v2

(∅, {2}, ∅, {1}, {1, 2}) v1 v12 − v1

(∅, {2}, ∅, {2}, {1, 2}) v12 − v2 v2

(∅, {1}, ∅, {1}, ∅, {1}, {1, 2}) v1 v12 − v1

(∅, {1}, ∅, {1}, ∅, {2}, {1, 2}) v12 − v2 v2

. . . . . . . . .

Calculation of Ii appears fairly simple due to the sign-changing property of ∂i, i.e.,

∂iv
(
S∪{j}, S

)
= −∂iv

(
S, S∪{j}

)
, which yields many cancellations in the path integral

Ii(ω). Under the transition law (3.3), the probability of a sample path ω of length L

being realized is simply (1/2)L. This yields

Φ1(N) = (1
2
)2(v1 + v12 − v2) + (1

2
)4 · 2(v1 + v12 − v2) + (1

2
)6 · 22(v1 + v12 − v2) + . . .

=
(
(1
2
)2 + (1

2
)3 + (1

2
)4 + . . .

)
(v1 + v12 − v2) =

1
2
(v1 + v12 − v2) = ϕ1(v),

and similarly Φ2(N) = 1
2
(v2 + v12 − v1) = ϕ2(v), as asserted in Theorem 3.1.
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If the terminal coalition is {1}, the calculation of Φ1({1}) and Φ2({1}) proceeds as

Path ω I1(ω) I2(ω)

(∅, {1}) v1 0

(∅, {2}, ∅, {1}) v1 0

(∅, {2}, {1, 2}, {1}) v12 − v2 v2 − (v12 − v1)

(∅, {2}, ∅, {2}, ∅, {1}) v1 0

(∅, {2}, ∅, {2}, {1, 2}, {1}) v12 − v2 v2 − (v12 − v1)

(∅, {2}, {1, 2}, {2}, ∅, {1}) v1 0

(∅, {2}, {1, 2}, {2}, {1, 2}, {1}) v12 − v2 v2 − (v12 − v1)

(∅, {2}, ∅, {2}, ∅, {2}, ∅, {1}) v1 0

. . . . . . . . .

Adding up, we get, for example,

Φ1({1}) = 1
2
v1 + (1

2
)3(v1 + v12 − v2) + (1

2
)5 · 2(v1 + v12 − v2) + . . .

= 1
2
v1 +

(
(1
2
)3 + (1

2
)4 + . . .

)
(v1 + v12 − v2) =

1
4
(3v1 + v12 − v2).

The complete value allocation table is the following.

(3.7)

{1} {2} {1, 2}
Φ1

1
4
(3v1 − v2 + v12)

1
4
(v1 + v2 − v12)

1
2
(v1 − v2 + v12)

Φ2
1
4
(v1 + v2 − v12)

1
4
(3v2 − v1 + v12)

1
2
(v2 − v1 + v12)

We observe that efficiency holds, i.e., v(S) = Φ1(S) + Φ2(S) for all S ⊆ N .

While calculating the value allocation operator Φ = (Φi)i∈N is feasible for two-person

games due to their simple game graph structure, it becomes considerably more chal-

lenging as the number of players |N | increases. For instance, computing Φ for the glove

game quickly becomes nontrivial. In light of this complexity, one might question the

rationale for using (3.6) when the much simpler Shapley formula is readily available.

The first reason is that Φ extends value allocation for all partial coalition T ⊆ N .

Though the extended Shapley value could allocate the value v(T ) by applying the

Shapley formula to the subgame v
∣∣
T
, the formula implicitly assumes that the coalition

only increases toward the target T , thus failing to comprehensively reflect the whole

game structure. For instance, the Shapley value at T completely disregards marginal

value information in the form of v(S∪{i})−v(S) for any S ⊆ T and i /∈ T . In contrast,

the value Φ thoroughly explores the game structure by integrating players’ marginal

value along each general coalition path, resulting in a fair allocation of the collaborative
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value v(T ) yet distinct from the Shapley value. Nevertheless, Theorem 3.1 shows that

the value (3.6) can be interpreted as an extension of the Shapley value.

Secondly, the significance of the Shapley value in cooperative game theory partly lies

in the intuitive and compelling nature of its four defining axioms. These axioms have

spurred numerous subsequent studies and explorations of variant axioms. Inspired by

the literature, we demonstrate that the value Φ(v, T ) can be simultaneously determined

for all v ∈ GN and T ⊆ N based on five properties that extend the Shapley axioms.

Thirdly, the average path integral formula (3.6) facilitates a significant expansion

of cooperative games and their value allocation schemes. This expansion encompasses

broader domains such as general cooperative game networks beyond (3.1), more com-

prehensive marginal values of players beyond (3.5), and diverse cooperative processes

beyond (3.3). Once we establish a game graph, players’ marginal value, and cooperative

process on the graph, the formula (3.6) becomes meaningful. This generalization is par-

ticularly advantageous for investigating allocations of cooperative games that may not

inherently satisfy efficiency. The efficiency condition is now interpreted as a straight-

forward equality constraint on the marginal values of the players; refer to Remark 6.4.

Finally, if the formula (3.6) proves challenging to compute, it becomes impractical.

However, we shall show that (3.6) can be easily calculated through a system of linear

equations for a broad range of cooperative processes. For instance, the solution to the

two-person game in Example 3.1 can be obtained by solving the system
−1 −1 0

2 0 −1

0 2 −1

−1 −1 2


 Φ1({1}) Φ2({1})

Φ1({2}) Φ2({2})
Φ1({1, 2}) Φ2({1, 2})

 =


−v1 −v2

v1 v1 − v12

v2 − v12 v2

v12 − v2 v12 − v1

 .

Calculation of (3.6) in this manner for the glove game yields the following table.

(3.8)

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Φ1

5
12

− 5
24

− 5
24

5
8

5
8

−1
4

2
3

Φ2 − 5
24

1
6

1
24

3
8

0 1
8

1
6

Φ3 − 5
24

1
24

1
6

0 3
8

1
8

1
6

The final column indeed corresponds to the Shapley value. Later, we will elaborate on

and expand this table for the α-Shapley value. Finally, we shall elucidate the connection

between the average path integral (3.6) and the linear system, referred to as Poisson’s

equation, by illuminating it through the perspective of combinatorial Hodge theory.
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4. A characterization of the value Φ

In addition to Shapley’s original axiomatic framework, several alternative foundations

have been proposed since. Young (1985) showed that the Shapley value is the unique

solution that adheres to efficiency, symmetry, and marginality.2 Chun (1989) showed

that the Shapley value is the only value that satisfies efficiency, triviality,3 coalitional

strategic equivalence,4 and fair ranking5 criteria. Casajus and Huettner (2018) charac-

terizes the Shapley value as the unique decomposable decomposer of the näıve value(
v(N) − v(N \ {i}

)
i∈N into a direct part and an indirect part, where the latter indi-

cates how much each player contributes to the other players’ direct parts. Hart and

Mas-Colell (1989)’s characterization of the Shapley value via the potential function ap-

proach is discussed in Remark 4.1. These results motivate us to identify properties that

can characterize the value (3.6) for all games v and coalitions S ⊆ N at the same time.

Following Casajus and Huettner (2018), we assume that the player sets are subsets of a

countably infinite set U , the universe of players; N denotes the set of all finite subsets

of U . Let G =
⋃

N∈N GN denote the set of all coalition games.

For i, j ∈ N and S ⊆ N , we define Sij ⊆ N by switching i and j in S, that is,

Sij =


S if S ⊆ N \ {i, j} or {i, j} ⊆ S,

S ∪ {i} \ {j} if i /∈ S and j ∈ S,

S ∪ {j} \ {i} if j /∈ S and i ∈ S.

For v ∈ GN and i, j ∈ N , we define vij ∈ GN by vij(S) = v(Sij). Intuitively, the

contributions of the players i, j in the game v are interchanged in the game vij. Let

v−i : 2
N\{i} → R denote the restricted game of v on the subsets of players N \ {i}, i.e.,

v−i(S) = v(S) for all S ⊆ N \ {i}. We shall now describe our set of five properties.

A1(efficiency): v(S) =
∑

i∈N Φi(v, S) for any v ∈ GN and S ⊆ N .

A2(linearity): For any v, v′ ∈ GN , α, α
′ ∈ R and S ⊆ N , it holds

Φi(αv + α′v′, S) = αΦi(v, S) + α′Φi(v
′, S).

We observe that A1, A2 are natural extensions of Shapley’s efficiency and linearity

axioms now holding for all coalitions S ⊆ N .

2Marginality states that for all i ∈ N , if ∆iv = ∆iw, then ϕi(v) = ϕi(w), where ∆iv(S) := v(S) −
v(S \ {i}) if i ∈ S, v(S ∪ {i})− v(S) if i /∈ S.
3Triviality states that if v ≡ 0 (v(S) = 0 for all S ⊆ N), then the value ϕi(v) = 0 for all i ∈ N .
4Coalitional strategic equivalence states that for all ∅ ≠ S ⊆ N and α ∈ R, if v = w + wS

α , then
ϕi(v) = ϕi(w) for all i ∈ N \ S, where wS

α(T ) := α if S ⊆ T , and 0 otherwise.
5Fair ranking states that for any given T ⊆ N , if v(S) = w(S) for all S ̸= T , then ϕi(v) > ϕj(v)
implies ϕi(w) > ϕj(w) for all i, j ∈ T .
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A3(symmetry): Φi(v
ij, Sij) = Φj(v, S) for all v ∈ GN , i, j ∈ N and S ⊆ N .

We may interpret A3 as follows: if the contributions of players i and j are interchanged

in the game, their payoffs also switch accordingly.

A4(null-player): For any v ∈ GN and i ∈ N , if ∂iv ≡ 0, then

Φj(v, S ∪ {i}) = Φj(v, S) = Φj(v−i, S) for all j ∈ N \ {i} and S ⊆ N \ {i}.

A4 says if player i provides no marginal value, the reward of the rest is independent of

the player i’s participation. A4 and A1 implies that in this case, i receives nothing, i.e.,

Φi(v, S) = 0 for all S ⊆ N . Notice A4 gives a relation between the payoffs of v and v−i.

So far, A1–A4 can be seen as a natural extension of the Shapley axioms to deal with

different groups of players N and coalitions S, as well as their symmetric counterpart

Sij. In particular, A1–A4 will be able to determine the Shapley value Φi(v,N). However,

A1–A4 appears insufficient to fully determine Φ for all coalitions S. Our observation is

that the following condition appears to be the key to complement A1–A4.

A5(independency): For every v ∈ GN and i ∈ N , it holds

S 7→ Φi(v, S) + Φi(v, S ∪ {i}) is constant for all S ⊆ N \ {i}.

A5 states that the average value of a player i based on her association with a group S

is independent of S. Note that A5 is also equivalent to the following.

A5’(reflection): For any v ∈ GN , i ∈ N and S, T ⊆ N \ {i}, it holds

(4.1) Φi(v, T ∪ {i})− Φi(v, S ∪ {i}) = −
(
Φi(v, T )− Φi(v, S)

)
.

A5’ is indeed inspired by the stochastic path integral representation of the value function

(3.6). Let S, T ⊆ N \ {i}, and consider an arbitrary coalition path (see Figure 3)

ω : X0 → X1 → · · · → Xτ

where X0 = S, Xτ = T , and each (Xt, Xt+1) is either a forward- or reverse-oriented

edge of the hypercube graph. Then the reflection of ω with respect to i is given by

ω′ : X ′
0 → X ′

1 → · · · → X ′
τ

where X ′
t := Xt ∪ {i} if i /∈ Xt, and X ′

t := Xt \ {i} if i ∈ Xt. We observe that the total

contribution of the player i (that is, the sum of ∂iv’s) along the paths ω and ω′ has the

opposite sign, because whenever the player i joins or leaves coalition along ω, i leaves or

joins coalition along ω′. On the other hand, we will show later that integrating ∂iv over

all paths traveling from S to T yields Φi(v, T ) − Φi(v, S) (see 6.3), while integrating

over all reflected paths yields Φi(v, T ∪{i})−Φi(v, S∪{i}). With this, the opposite sign
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Figure 3. A coalition path from S to T and its reflection w.r.t. i.

of path integrals now yields the reflection property,6 which provides information about

the values at two different states S, T in terms of their relationship with S∪{i}, T ∪{i}.
This allows us to determine the allocation Φ for all games v and coalitions S ⊆ N .

Theorem 4.1. There exists a unique allocation map Φ = (Φi)i∈N : GN × 2N → R|N |

that satisfies A1–A5 for all N and Φ(v, ∅) = 0. The map Φ is represented by (3.6).

In summary, while the Shapley formula (2.2) considers coalition processes solely in

the joining direction, the path integral formula (3.6) enables coalitions to proceed in

either direction, thereby determining the value Φ(S) for all S ⊆ N . We refrain from

providing normative justification for A1–A5, nor do we label them as “axioms”. These

properties are simply characteristics that the value Φ exhibits, and Theorem 4.1 shows

that they collectively determine the value for all coalitions simultaneously. To the best

of the author’s knowledge, this constitutes the first such simultaneous characterization.

Remark 4.1 (Characterization of the Shapley value via potential function approach).

Let v∅ ∈ G∅ denote the null game; v∅(∅) = 0. Hart and Mas-Colell (1989) defines a

potential function P : G → R as satisfying P (v∅) = 0 and the following condition

(4.2)
∑
i∈N

DiP (v) = v(N) for all v ∈ GN ,

where DiP (v) := P (v) − P (v−i) is called the marginal contribution of a player i in a

game v. The following is a potential-based characterization of the Shapley value.

Theorem 4.2 (Hart and Mas-Colell (1989)). There exists a unique potential function

P . For any v ∈ GN , the payoff
(
DiP (v)

)
i∈N coincides with the Shapley value of v.

6The following condition appears to be weaker than (4.1): For any v ∈ GN and S ⊆ [N ] \ {i, j} with
i ̸= j, it holds that (∗) : Φi[v](S ∪ {i, j})−Φi[v](S ∪ {i}) = −

(
Φi[v](S ∪ {j})−Φi[v](S)

)
. However, It

is obvious that repeated application of (∗) implies (4.1), hence they are equivalent.
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Noting that the formula (4.2) can be rewritten as

(4.3) P (v) =
1

|N |

[
v(N) +

∑
i∈N

P (v−i)

]
,

we see that P (v) is uniquely determined by the values of P for the subgames of v. Hart

and Mas-Colell (1989) also provides an explicit formula for the potential as

(4.4) P (v) = E
[
|N |
|S|

v(S)

]
where the expectation is taken with respect to a probability distribution p over 2N ,

defined as p(S) := 1/n · 1/
(
n
s

)
= s!(n−s)!

n!n
, where s = |S|, n = |N |. This allows one to

interpret the potential as the expected normalized worth.

According to Hart and Mas-Colell, Theorem 4.2 can be viewed as a characterization

of the Shapley value based solely on one axiom (4.2). They also note that P serves as

a formal mathematical potential, with the Shapley value as its gradient.

Concerning the allocation of value of a game v ∈ GN for partial coalitions T ⊊ N ,

the allocation scheme proposed by Hart and Mas-Colell based on potential function

differences is proven to be equivalent to the extended Shapley value. Consequently, it

faces the same limitation of not fully capturing the entire game structure. In contrast,

Φ thoroughly explores the game structure by integrating players’ marginal value along

each general coalition path. This leads to an allocation of the collaborative reward v(T )

that differs from the Shapley value, as illustrated in (3.8) for example.

5. f-Shapley value

The null-player axiom, which states that a player who contributes no marginal value

to any coalition receives nothing, is crucial in determining the Shapley value.

It is worth noting that the Shapley value (2.2) for player i can be rewritten as

ϕi(v) =
1

|N |!
∑
σ

[∑
j∈N

∂iv
(
Sσ
j , S

σ
j ∪ {j}

)]
,(5.1)

because the only nonzero term in the path-integral, the sum over j in the bracket, is

when j = i. This indicates that the role of the coalition game v is simply yielding the

marginal contribution of player i as the form ∂iv. Although opting for player i’s marginal

value in this manner might initially appear reasonable, particularly given Shapley’s null

player axiom, we now contend that it represents just one of several possibilities. The

only essential attribute ∂iv may have is that it belongs to the space of edge flows

(5.2) ℓ2(E) =
{
f : E → R

∣∣ f(S∪{i}, S
)
= −f

(
S, S∪{i}

)
for all i ∈ N, S ⊆ N \{i}

}
.
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An edge flow f is thus a function on the edges satisfying the sign-changing property.

Now we shall define the player i’s marginal value as an arbitrary edge flow fi ∈ ℓ2(E),
and contend that this is a practically relevant generalization because, for example, even

when only some of the players make progress at a given cooperative stage, the reward

is usually distributed to all players in the cooperation in practice.

When player i’s marginal value is given by fi ∈ ℓ2(E), a natural generalization of the

Shapley value can now be given by replacing ∂iv with fi in (5.1), yielding

ϕfi :=
1

|N |!
∑
σ

∑
j∈N

fi
(
Sσ
j , S

σ
j ∪ {j}

)
.(5.3)

Note that fi
(
Sσ
j , S

σ
j ∪ {j}

)
is not necessarily zero even when j ̸= i. Furthermore, the

coalition game v is no longer present in the formula.

The average path integral formula (3.6) also naturally generalizes as

(5.4) Φfi(T ) =

∫
Ω

τT (ω)∑
t=1

fi
(
Xt−1(ω), Xt(ω)

)
dP(ω) = E

[ τT∑
t=1

fi
(
Xt−1, Xt

)]
,

again allowing us to interpret Φfi(T ) as the player’s expected total contribution, thus

her fair share, given that the coalition state advances from ∅ to T and the player i’s

marginal contribution for each transition is now given by an edge flow fi.

Let f = (f1, ..., fn) denote the marginal values of players, ϕf := (ϕfi)i∈N , and let

Φf := (Φfi)i∈N : 2N → R|N | define the value allocator associated to f .

Theorem 5.1. Let G = (V , E) be the coalition graph and f ∈
(
ℓ2(E)

)|N |
denote the

marginal values of players. Then ϕf = Φf (N).

Proof. Fix i ∈ N and S ⊆ N with |S| ≤ |N | − 1. Observe the map fi ∈ ℓ2(E) 7→ ϕfi is

linear. By linearity, it is enough to prove the proposition when fi = χ(S,S∪{k}) for any

fixed k ∈ N \ S, where χ(S,S∪{k}) is the indicator equal to 1 at (S, S ∪ {k}) (thus −1 at

(S ∪ {k}, S)), and 0 on all other edges in E . First, observe (5.3) yields

(5.5) ϕχ(S,S∪{k}) =
|S|!(|N | − |S| − 1)!

|N |!
.

Next, define an edge flow g :=
∑

|T |=|S|, j /∈T

χ(T,T∪{j}), and observe

Φg(N) =
∑

|T |=|S|, j /∈T

Φχ(T,T∪{j})(N)(5.6)

=

(
|N |
|S|

)(
|N | − |S|

)
Φχ(S,S∪{k})(N)
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where the second equality is by the fact Φχ(T,T∪{j})(N) = Φχ(S,S∪{k})(N) due to the

symmetry of the coalition graph (3.1) and the random coalition process (3.3).

Noting that
(|N |
|S|

)(
|N | − |S|

)
= |N |!

|S|!(|N |−|S|−1)!
, it remains to show Φg(N) = 1. By the

definition of the flow g, it is clear that for any sample path ω of the coalition process,

we have the following pathwise equality (recalling X0 = ∅)
τN (ω)∑
t=1

g
(
Xt−1(ω), Xt(ω)

)
= 1.

Hence Φg(N) = E[
∑τN

t=1 g(Xt−1, Xt)] = 1, proving the theorem. □

Theorem 3.1 now becomes a special case when fi = ∂iv. In light of the theorem, we

may call ϕf the f-Shapley value, with Φf its extension to all partial coalition states.

An example of less strict marginal value assignment may be given as follows. Given

α ∈ R and a game v ∈ GN , we define player i’s marginal value by (cf. (3.5))

(5.7) fα,i
(
S, S ∪ {j}

)
:=

α
(
v(S ∪ {i})− v(S)

)
if j = i,

(1−α)
|N |−1

(
v(S ∪ {j})− v(S)

)
if j ̸= i.

Notice fα,i = ∂iv if α = 1. For α ∈ (0, 1), the marginal value (5.7) is such that for the

transition from S to S ∪ {i}, player i receives the α proportion of the marginal value

v(S ∪ {i})− v(S), and (1− α)
(
v(S ∪ {i})− v(S)

)
is equally distributed to the rest of

the players. We may call ϕfα = (ϕfα,i
)i∈N the α-Shapley value, with Φfα = (Φfα,i

)i∈N :

2N → R|N | its extension. The null-player axiom may not hold for the α-Shapley value.

Example 5.1. Let N = 2, and v ∈ G{1,2} be given by v(∅) = v({2}) = 0, v({1}) =

v({1, 2}) = 1. Note that ∂2v = 0, thus the Shapley value ϕ2(v) = 0 for player 2. On the

other hand, the α-Shapley value for player 2 can be easily calculated as 1 − α. Player

2 continues to receive the 1− α portion of the grand coalition value.

Example 5.2. We revisit the glove game from Example 2.1 and calculate the α-Shapley

value (5.3). For this, we need to calculate (recall N = {1, 2, 3})

ϕα,i(v) =
1

6

∑
σ

[
fα,i(∅, {σ(1)}) + fα,i({σ(1)}, {σ(1), σ(2)}) + fα,i({σ(1), σ(2)}, N)

]
,

where fα,i(∅, {σ(1)}) + fα,i({σ(1)}, {σ(1), σ(2)}) + fα,i({σ(1), σ(2)}, N) represents the

total contribution of player i along the coalition path σ. For example, if σ = (1, 2, 3)

(that is, the player 1 joins first, followed by the players 2 and 3), this sum equals 1−α
2

for

i = 1, 3 and α for i = 2, because a pair of gloves is made precisely when the player 2 joins

in this path. Thus, player 1 contributes marginal value 1−α
2

when joining the coalition
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first (2 of 6 permutations) and marginal value α otherwise (4 of 6 permutations), so

ϕα,1(v) =
1+3α

6
. Similarly, ϕα,2(v) = ϕα,3(v) =

5−3α
12

. This allocation coincides with the

Shapley value if α = 1, and player 1 receives more than players 2, 3 if and only if α > 1
3
.

In Section 7, we will explain how to calculate the value (5.4) in general and, as an

example, obtain the following extended allocation table for the α-Shapley value:

(5.8)

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Φfα,1

15α−5
24

5−15α
48

5−15α
48

7α+3
16

7α+3
16

1−3α
8

3α+1
6

Φfα,2

5−15α
48

3α−1
12

3α−1
48

α+5
16

1−α
2

3α−1
16

5−3α
12

Φfα,3

5−15α
48

3α−1
48

3α−1
12

1−α
2

α+5
16

3α−1
16

5−3α
12

We see that Φfα,i
(N) = ϕα,i(v); the extended allocation at the grand coalition coincides

with the α-Shapley value, as claimed in Theorem 5.1.

Remark 5.1 (Population Monotonic Allocation Schemes). Sprumont (1990) argues

that to address the possibility of partial cooperation effectively, it is necessary not only

to determine the allocation of the grand coalition value v(N) but also to determine

how to allocate the value of every coalition S in case players do not fully cooperate

and S is eventually formed. His concern is to ensure that once a coalition S has agreed

upon an allocation of v(S), no player will be enticed to form a smaller coalition than

S through bargaining or other means. This requirement translates into the necessity

for each player’s payoff to increase as the coalition to which they belong grows larger.

Consequently, Sprumont seeks a Population Monotonic Allocation Scheme (PMAS).

Definition 5.2. A vector x = (xiS)i∈S,S⊆N is a population monotonic allocation scheme

(PMAS) of the game v ∈ GN if xi∅ = 0 for all i ∈ N and x satisfies the following:∑
i∈S

xiS = v(S) for all S ⊆ N, and xiS ≤ xiT for all i ∈ S ⊆ T.

Sprumont then verifies sufficient conditions for a game v to possess a PMAS, which

includes the classes of quasiconvex games7 and Increasing Average Marginal Contribu-

tions (IAMC) games8, as well as the following equivalent condition.

Theorem 5.3 (Sprumont (1990)). A game has a PMAS if and only if it is the sum

of a positive linear combination of monotonic simple games with veto control 9 and an

additive game v, given by va(S) := a|S| for all S ⊆ N , where a ∈ R is arbitrary.

7v is quasiconvex if
∑

i∈S

(
v(S)− v(S \ {i})

)
≤

∑
i∈S

(
v(T )− v(T \ {i})

)
for all S ⊆ T .

8v is an IAMC game if 1
|S|

∑
i∈S

(
v(S)− v(S \ {i})

)
≤ 1

|T |
∑

i∈T

(
v(T )− v(T \ {i})

)
for all S ⊆ T .

9v is monotonic if v(S) ≤ v(T ) for all S ⊆ T . v is a simple game if v(S) ∈ {0, 1} for all S ⊆ N . i ∈ N
is a veto player in a game v if v(S) = 0 for all S ⊆ N \ {i}. A game with veto control is a game with
at least one veto player.
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The related finding by Abe and Nakada (2023) shows that the Shapley value exists

within the core of a game v if and only if v can be expressed as the summation of a

linear combination of basic games meeting specific criteria. Geometrically, these basic

games correspond to the extreme edges of a polyhedral structure.

On the other hand, Sprumont demonstrates that, while every game with a PMAS

is totally balanced, not every totally balanced game has a PMAS. For example, every

assignment game is totally balanced, but many of them lack a PMAS.

In summary, PMAS serves as a multivalued solution concept aimed at determining

how to distribute the value of each coalition S, while our allocation scheme Φ in (5.4)

is single-valued. In addition, the existence of PMAS is not guaranteed for all games,

whereas Φ always exists given any marginal values of players f = (fi)i∈N . Investigating

the characteristics of f that result in an allocation satisfying reasonable economic prop-

erties remains an intriguing avenue for future research. For instance, imposing f ≥ 0 on

E (thus f ≤ 0 on E−) seems pertinent to Sprumont’s consideration, since the condition

implies no player possesses an immediate incentive to depart from the existing coalition.

Remark 5.2 (The egalitarian Shapley values). Given v ∈ GN , let EDi(v) := v(N)
|N |

denote the equal division value. For α ∈ R and i ∈ N , the convex combination of the

Shapley value and the equal division value

(5.9) ESα
i (v) := αϕi(v) + (1− α)EDi(v)

is called an egalitarian Shapley value (Joosten (1996)) for 0 ≤ α ≤ 1. Egalitarian

Shapley values meet efficiency, symmetry, and linearity, but they do not meet the null

player property if α ̸= 1. However, they satisfy the following weaker property

Null player in a productive environment (NPE): If v(N) ≥ 0 and i is a null player,

i.e., ∂iv ≡ 0, then player i’s payoff φi(v) is nonnegative.

NPE states that when the entire society is productive (v(N) ≥ 0), null players should

not receive negative payoffs (because they do not cause harm to the society). Casajus

and Huettner (2013) claims that if we no longer require null players’ payoffs to be

zero, the nature of solidarity emerges in how null players are treated. Since null players

are completely unproductive, their “selfish” payoffs, or Shapley payoffs, are zero. As

a result, any nonzero payoff must be due to solidarity among the players. To prevent

players from receiving unreasonable payoffs corresponding to the case α < 0 in (5.9),

Casajus and Huettner invokes the following axiom.

Desirability: If v(S ∪ {i}) ≥ v(S ∪ {j}) for all S ⊆ N \ {i, j}, then φi(v) ≥ φj(v).
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Desirability compares two players in a game to ensure that their payoffs do not

contradict their productivities as measured by marginal contributions.

A characterization of the class of egalitarian Shapley values is now given as follows.

Theorem 5.4 (Casajus and Huettner (2013)). A value φ satisfies efficiency, linearity,

desirability, and the null player in a productive environment property if and only if there

exists an α ∈ [0, 1] such that φ = ESα.

Our definition of the marginal value (5.7) clearly indicates that the α-Shapley value

is related to the egalitarian Shapley value. To see this, we let |N | = n, and compute

ϕfα,i
=

1

n!

∑
σ

∑
j∈N

fα,i
(
Sσ
j , S

σ
j ∪ {j}

)
=

1

n!

[
α
∑
σ

(
v
(
Sσ
i ∪ {i}

)
− v(Sσ

i )
)
+

1− α

n− 1

∑
j ̸=i

∑
σ

(
v
(
Sσ
j ∪ {j}

)
− v(Sσ

j )
)]

= αϕi(v) +
1− α

n− 1

∑
j ̸=i

ϕj(v)

= αϕi(v) +
1− α

n− 1

(
v(N)− ϕi(v)

)
=

nα− 1

n− 1
ϕi(v) +

n(1− α)

n− 1

v(N)

n

= ESα′

i (v), where α′ =
nα− 1

n− 1
.

This demonstrates that the α-Shapley value aligns with the α′-egalitarian Shapley value.

Consequently, (Φfα,i
)i∈N serves as a microfoundation for the egalitarian Shapley value,

and extends it to all coalitions T ⊆ N , as indicated by Theorem 5.1.

6. General cooperative networks

We have extended Shapley’s cooperative value allocation theory by considering the

coalition game graph (3.1), generalized marginal values represented by edge flows (5.2),

and the allocation operator as the average path integral of flows (5.4). We now observe

that these concepts can be extended to more general network structures. This leads us

to consider a general cooperative game graph G = (V , E), which is a general connected

graph with V a finite set of cooperative states and E a set of edges. Each S ∈ V is not

necessarily a subset of N , but V now represents an arbitrary finite set, with each S ∈ V
describing a general cooperative situation. For example, S, T ∈ V may both represent

cooperations among the same group of players but working under different conditions.
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Figure 4. A cooperative graph can have an arbitrary structure.
Each edge has a forward and reverse direction associated to it.

As an example of the situation of interest, we may consider the following: Let V
represent the set of all possible states of a given project, in which the project manager,

or principal, wishes to reach the project completion state F ∈ V . The project state can
move from S to T with a certain probability, if there is an edge between them. For the

project’s advancement, the manager hires N agents, or employees.

We now ask the following question: Given the principal’s reward function in each

state and her payoff function to agents at each state transition, what is her expected

revenue when the project is completed, and what is her expected liability to each agent?

The question leads us to consider a general cooperative process (Xt)t∈N0 valued on

the state space V with a given initial state X0 = O ∈ V . Let (Ω,F ,P) represent

the probability space. In general, the governing law P of the process (Xt)t∈N0 can be

arbitrary, except for the requirement that Xt+1 be one of the adjacent states of Xt.

Let (S, T ) ∈ E denote a forward edge directed from S to T , with its reverse (T, S) ∈
E−. Set E := E ∪ E−.10 The above requirement now reads (Xt, Xt+1) ∈ E .

Let ℓ2(E) denote the set of all edge flows f : E → R satisfying the sign changing

property f(T, S) = −f(S, T ). Motivated from Section 5, we continue to assume that

each agent i ∈ N is associated with an edge flow fi ∈ ℓ2(E), which represents the agent

i’s marginal value. We then define the path integral

(6.1) Ifi(T ) = Ifi(T )(ω) :=

τT (ω)∑
t=1

fi
(
Xt−1(ω), Xt(ω)

)
where τT = τT (ω) ∈ N denotes the first time the process

(
Xt(ω)

)
t∈N0

visits T . Given

that the project state has progressed from O to T along the path ω, (6.1) represents the

agent i’s total contribution throughout the progression. The value allocation function

10Thus E ∩ E− = ∅, and for each S ̸= T in V, either (S, T ) ∈ E , or (S, T ) ∈ E−, or (S, T ) /∈ E .



20 TONGSEOK LIM

can then be analogously defined as the average path integral

(6.2) Φfi(T ) :=

∫
Ω

Ifi(T )(ω)dP(ω) = E[Ifi(T )] for each T ∈ V .

Φfi(T ) represents the agent’s expected total contribution given the state advances from

O to T , where fi represents the agent i’s marginal contribution for each transition.

Remark 6.1 (Initial state). In coalition games, the vacant coalition ∅ usually serves as

the starting point for coalition progression. However, in a general cooperative network,

any state may serve as the starting point. We use IS
fi
(T ) and ΦS

fi
(T ) to represent the

path integral and its expected value similar to (6.1) and (6.2), with the distinction that

the superscript denotes the initial state, i.e. X0 = S, while T denotes the terminal state

as before. We will drop the superscript when X0 = O.

Importantly, the identity below will be useful and proven later

(6.3) ΦS
f (T ) + ΦT

f (U) = ΦS
f (U)

for any f ∈ ℓ2(E) and S, T, U ∈ V . In particular, ΦT
f (T ) = 0 (by setting U = T ), and

ΦS
f (T ) = −ΦT

f (S) (by setting U = S). Note that given a fixed initial state O, this allows

us to represent ΦS
f in terms of Φf as ΦS

f (T ) = Φf (T )− Φf (S).

We can now provide a general answer to the question. Let V represent the project

state space in which the manager wishes to achieve the project completion state F ∈ V .
Let v : V → R denote the manager’s revenue, i.e., v(U) represents the manager’s final

revenue if the project ends at the state U . Let N = {1, ..., n} denote the employees with

their marginal contributions f1, ..., fn ∈ ℓ2(E). Because it is her contribution and share,

the manager must pay fi(S, T ) to the employee i at each state transition from S to T .

Thus, the manager’s surplus in this single transition is given by v(T )−v(S)−
∑

i fi(S, T ).

Now the manager’s revenue problem is: What is the manager’s expected revenue if they

begin at the initial project state O (with v(O) = 0), and the manager’s goal is to reach

the project completion state F?

We can observe that the answer is v(F )−
∑

i Φfi(F ), where Φfi is given by (6.2). (So

if this is negative, the manager may decide not to begin the project at all.)

Furthermore, in the middle of the project, the manager may want to recalculate her

expected gain or loss. That is, suppose the current project status is T , and they arrived

at T via a specific path ω, and thus the manager has paid the payoffs, i.e., the path

integrals (6.1), to the employees. The manager may wish to recalculate the expected



COOPERATIVE NETWORKS AND f -SHAPLEY VALUE 21

gain if she decides to proceed from T to F . This is now provided by

v(F )− v(T )−
∑
i

ΦT
fi
(F ) = v(F )− v(T )−

∑
i

(
Φfi(F )− Φfi(T )

)
,

and the manager can make decisions based on the expected revenue information.

Remark 6.2 (Efficiency). Shapley’s efficiency axiom is a crucial ingredient for charac-

terizing his value allocation scheme; without it, it is difficult to establish the uniqueness

of the allocation. The efficiency axiom is equally important for our charaterization result

(Theorem 4.1) to yield a unique allocation for all coalitions.

Our description of the principal-agent allocation problem, on the other hand, shows

that efficiency is merely a constraint, which is equivalent to declaring that the principal’s

marginal surplus v(T ) − v(S) −
∑

i fi(S, T ) is identically zero for every (S, T ) ∈ E .
The principal enters the problem as soon as we relax this vanishing constraint, and

v : V → R then represents her value at each cooperative state. The crucial difference

between principal and agents is that the value of the principal is represented as a

function v on V , whereas the (marginal) value of the agents is represented as edge flows

(fi)i∈N on E . Finally, we can recover the efficiency
∑

i Φfi(T ) = v(T ) for all T ∈ V by

imposing the following marginal efficiency condition

(6.4) v(T )− v(S) =
∑
i

fi(S, T ) for every (S, T ) ∈ E .

For example, the α-Shapley value (5.7) satisfies this condition, hence is efficient.

Remark 6.3 (Myerson’s conference structures and fair allocation rules). Myerson

(1977, 1980) considers how the outcome of a cooperative game should be determined

by which groups of players hold cooperative planning conferences. He suggests an al-

location rule, which are functions that map conference structures to payoff allocations.

The rule is characterized by a notion of fairness, which we briefly explain.

Let N = {1, ..., n} be the set of players. Let V : 2N → 2R
n
be a (set valued) function

such that i) V (S) is a closed subset of Rn, ii) ∅ ̸= V (S) ̸= Rn if S ̸= ∅ (V (∅) = Rn),

and iii) if x ∈ V (S), y ∈ Rn and yi ≤ xi for all i ∈ S, then y ∈ V (S). The set

V (S) is interpreted as the set of all payoff allocations that provide members of S with

a combination of payoffs that they can guarantee for themselves without cooperating

with the other players. In Myerson (1980), such a V is referred to as a game.

For any S ⊆ N , let ∂V (S) be the weakly Pareto-efficient frontier of V (S), i.e.,

∂V (S) = {x ∈ V (S) | if yi > xi for all i ∈ S, then y /∈ V (S)}.



22 TONGSEOK LIM

Any S ⊆ N with |S| ≥ 2 is called a conference. A conference structure is then any

collection of conferences. Let CS denote the set of all possible conference structures

CS = {Q |S ⊆ N and |S| ≥ 2 for all S ∈ Q}.

Players i and j are connected by Q if i = j or there exists a sequence of conferences

{S1, ..., Sm} ⊆ Q such that i ∈ S1, j ∈ Sm and Sk ∩ Sk+1 ̸= ∅ for all k = 1, ...,m − 1.

Then N/Q denotes the partition of N defined by this connectedness relation, i.e.,

N/Q =
{
{j | i and j are connected by Q}

∣∣ i ∈ N
}
.

That is, the sets in N/Q are the maximal connected coalitions determined by Q.

An allocation rule for the game V is any function Ψ : CS → Rn such that

(6.5) Ψ(Q) ∈ ∂V (S) for every Q ∈ CS, S ∈ N/Q.

This condition asserts that if S is a maximally connected coalition for the conference

structure Q, then its members should coordinate themselves to achieve a (weakly)

Pareto-efficient allocation among the allocations available to them.

For i ∈ N , S ⊆ N , the conference structures Q− S and Q−∗ i are defined by

Q− S = {T |T ∈ Q and T ̸= S}, Q−∗ i = {T |T ∈ Q and i /∈ T}.

So Q− S is the conference structure that differs from Q in that S is removed from the

list of permissible conferences, whereas Q −∗ i is the conference structure that differs

from Q in that all conferences containing player i are eliminated.

Myerson defines that an allocation rule Ψ : CS → Rn is fair if

(6.6) Ψi(Q)−Ψi(Q− S) = Ψj(Q)−Ψj(Q− S) for all Q ∈ CS, S ∈ Q, i ∈ S, j ∈ S.

Ψ(·) is fair if the members of S decide not to meet together, the change in conference

structure (from Q to Q− S) should have an equal impact on all members of S.

On the other hand, an allocation Ψ : CS → Rn has balanced contributions if

(6.7) Ψi(Q)−Ψi(Q−∗ j) = Ψj(Q)−Ψj(Q−∗ i) for all Q ∈ CS, i ∈ S, j ∈ S.

Ψ(·) has balanced contributions if j’s contribution to i equals i’s contribution to j in

any conference structure. Now a main result of Myerson (1980) is the following.

Theorem 6.1 (Myerson (1980)). There exists a unique fair allocation rule Ψ(·) for the
game V . This allocation rule also has balanced contributions. Conversely, if Ψ(·) has

balanced contributions, then Ψ(·) is a fair allocation rule.
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The conference structure Q appears relevant to our framework as it can be interpreted

as a graph G, with each node being either a conference S ∈ Q or a singleton {i} for each

i /∈ ∪S∈QS. Let two conferences S and T in Q be connected by an edge if S ∩ T ̸= ∅,
while every singleton {i} with i /∈ ∪S∈QS be isolated in G. Notice then each coalition

in N/Q corresponds to the union of all nodes in a maximal connected subgraph of

G. In this viewpoint, Myerson’s conference structures differ from the coalition graphs

(3.1), representing a more general cooperative networks (while its nodes continue to be

restricted to coalitions). Myerson’s allocation rule Ψ depends on both the game V and

the conference structure Q. This dependence arises from the assumption that players

will form the largest feasible coalitions aligning with the conference structure. Ψ is

characterized by the fairness axiom, resulting in an implicit allocation. In contrast, our

allocation Φ is determined by the cooperative network G = (V , E), the law P governing

the cooperative process (Xt)t∈N0 , the marginal values of players f = (fi)i∈N , and the

arbitrary initial and terminal cooperative states O and T in V . As a result, Φ provides

a flexible allocation framework, which is explicitly represented by the formula (6.2).

7. Reversible Markov chains and Poisson’s equations on graphs

The preceding discussions naturally lead to the question of how to evaluate the value

function (6.2), which represents an infinite sum of all possible paths between states. As

the network gets more complicated, this can quickly become intractable.

In this section, we establish the relationship between the value function (6.2) and the

Poisson’s equation on graphs, when the cooperative process follows an important class

of probability laws, known as reversible Markov chains. This will allow us to compute

(6.2) by solving a system of linear equations, which is tractable.

To this end, we need to introduce basic linear operators, such as gradient, divergence,

and Laplacian, between linear function spaces ℓ2(V) and ℓ2(E). We refer to Lim (2020)

for an accessible introduction to combinatorial Hodge theory. Recently, the combinato-

rial Hodge decomposition has found application in game theory across diverse contexts,

including noncooperative games (Candogan et al., 2011), cooperative games (Stern and

Tettenhorst, 2019), and the ranking of social preferences (Jiang et al., 2011).

Let ℓ2(V) denote the space of functions V → R with the standard inner product

(7.1) ⟨u, v⟩ :=
∑
S∈V

u(S)v(S).

We recall that these are called coalition games if V = 2N and v(∅) = 0. In contrast, V
can now be an arbitrary finite set and v ∈ ℓ2(V) is not required to assume 0 anywhere.
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Let λ : E → R+ define the edge weight, satisfying λ(T, S) = λ(S, T ) ≥ 0 (i.e., no sign

alternation) for all S, T ∈ V . We declare that there is an edge between S and T , i.e.,

(S, T ) ∈ E , if and only if λ(S, T ) > 0. Given an edge weight λ, we denote by ℓ2λ(E) the
space of functions E → R equipped with the weighted inner product

(7.2) ⟨f, g⟩λ :=
∑

(S,T )∈E

λ(S, T )f(S, T )g(S, T ).

with the sign changing property f(T, S) = −f(S, T ). Elements in ℓ2λ(E) are often called

edge flows. Now the gradient operator d: ℓ2(V) → ℓ2λ(E) is defined by

(7.3) dv(S, T ) := v(T )− v(S) for each (S, T ) ∈ E .

Given a game v on V , dv measures its marginal value for each edge (S, T ) ∈ E .
Let d∗ : ℓ2λ(E) → ℓ2(V) denote the adjoint of d. d∗ is called divergence operator, which

is characterized by the defining relation for the adjoint operator

(7.4) ⟨dv, f⟩λ = ⟨v, d∗f⟩ for every v ∈ ℓ2(V) and f ∈ ℓ2λ(E).

It is important to note that d is defined by (7.3) and is independent of the edge weight

λ. However, d∗ depends on the choice of λ due to its defining relationship (7.4), so it

must be called a weighted divergence, but we simply call it divergence. In fact, (7.4)

gives the following explicit form of the divergence

d∗f(S) =
∑
T∼S

λ(T, S)f(T, S) for every S ∈ V ,(7.5)

where T ∼ S means λ(S, T ) > 0, i.e., S and T are adjacent in the network.

The Laplacian is the symmetric (self-adjoint) operator L = d∗d : ℓ2(V) → ℓ2(V):

Lv(S) =
∑
T∼S

λ(S, T )
(
v(S)− v(T )

)
.

Lv(S) calculates the weighted sum of v’s marginal increment directed to each state S.

Poisson’s equation is a partial differential equation of broad utility with the form

Lu = h, where L represents the Laplace operator. Typically, a function h is given,

and u is sought. Given a weighted graph G = (V , E) with weight λ and an edge flow

f ∈ ℓ2λ(E), we are interested in the following form of the Poisson’s equation

(7.6) Lu = d∗f.

The solution u can be interpreted as follows: given an edge flow f , the potential function

u : V → R solving (7.6) is such that its gradient flow du : E → R is closest to the flow
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f . To see this, we recall the fundamental theorem of linear algebra:

(7.7) ℓ2(V) = R(d∗)⊕N (d), ℓ2λ(E) = R(d)⊕N (d∗),

whereR(·) andN (·) represent the range and nullspace, and ⊕ represents the orthogonal

decomposition with respect to the inner products on ℓ2(V) and ℓ2λ(E).
Now given f , the equation du = f can be solved only if f ∈ R(d). In general, a least

squares solution to du = f instead solves du = f1 where f = f1 + f2 with f1 ∈ R(d)

and f2 ∈ N (d∗). Applying d∗ yields d∗du = d∗f1 = d∗f , which is (7.6).

We also note that any two solutions u, v to (7.6) differ by a constant if G is connected.

This is because Lu = Lv implies du = dv (Lu = 0 ⇒ ⟨d∗du, u⟩ = 0 ⇒ ⟨du, du⟩λ =

||du||2
ℓ2λ(E)

= 0 ⇒ du = 0). In particular, if u is specified at a state, say u(O) = u0 for

some O ∈ V , then u is uniquely determined by the equation (7.6).

Let (Xt)t∈N0 denote the cooperative process valued in V . In general, cooperative evo-

lution can be described as any stochastic process satisfying the condition (Xt, Xt+1) ∈ E .
However, to understand the connection between the average path integral (6.2) and the

Poisson’s equation, we now focus on the processes whose governing law P belongs to an

important class in probability theory, known as the class of reversible Markov chains.

A Markov chain (Xt)t∈N0 is characterized by its transition probabilities (or rates)

between two adjacent states S and T , denoted by pS,T , which is the probability of

Xt+1 = T given Xt = S. A Markov chain on a graph G is called reversible if there exists

an edge weight λ : E → R+ such that the transition probabilities are defined by

pS,T =
λ(S, T )∑

U∼S λ(S, U)
.(7.8)

(7.8) describes a (biased) random walk on the graph, where the parameter λ indicates

the relative likelihood of the direction in which cooperation is likely to progress, thereby

providing increased flexibility in modeling stochastic cooperative processes. This for-

mulation includes the previous coalition formation process (3.3) as a particular case,

where λ remains constant at 1 and G represents the coalition graph (3.1).

If a Markov chain is reversible, there exists a stationary distribution π = (πS)S∈V

such that πSpS,T = πTpT,S for all S, T ∈ V . Another implication of reversibility is that

every loop and its inverse loop have the same probability of being realized, that is,

(7.9) pS,S1pS1,S2 . . . pSn−1,SnpSn,S = pS,SnpSn,Sn−1 . . . pS2,S1pS1,S.

We illustrate the importance of these properties in establishing the following result.
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Theorem 7.1. Let the Markov chain (7.8) be defined on a connected graph G with

weight λ, and let fi ∈ ℓ2λ(E). Then Φfi in (6.2) uniquely solves the Poisson’s equation

(7.10) LΦfi = d∗fi with the initial condition Φfi(O) = 0.

Proof. Fix T ∈ V and let {T1, ..., Tn} be the set of all states adjacent to T (which is

nonempty by the connectedness of G), and set ΛT =
∑n

k=1 λ(T, Tk) > 0.

By (7.5) and (7.8), for any fi ∈ ℓ2λ(E), we have

d∗fi(T )/ΛT =
n∑

k=1

pT,Tk
fi(Tk, T ), and(7.11)

LΦfi(T )/ΛT =
n∑

k=1

pT,Tk

(
Φfi(T )− Φfi(Tk)

)
=

n∑
k=1

pT,Tk
ΦTk

fi
(T )(7.12)

where the last equality is from 6.3 which will be shown later. Now we can interpret the

right side of (7.12) as the aggregation (6.2) of path integrals of fi (6.1) along all loops

beginning and ending at T , but in this aggregation of fi we do not take into account the

first move from T to Tk, since this first move is described by the transition rate pT,Tk

and not driven by ΦTk
fi
. On the other hand, if we aggregate path integrals of fi for all

loops emanating from T , we get 0 due to the reversibility (7.9) and the sign changing

property of fi. This observation allows us to conclude:

0 = aggregation of path integrals of fi along all loops emanating from T

= aggregation of path integrals of fi along all loops except the first moves

+ aggregation of path integrals of fi for all first moves from T

=
n∑

k=1

pT,Tk
ΦTk

fi
(T ) +

n∑
k=1

pT,Tk
fi(T, Tk)

= LΦfi(T )/ΛT − d∗fi(T )/ΛT ,

yielding LΦfi(T ) = d∗fi(T ). □

The theorem allows us to evaluate the potentially intractable value function Φfi by

a feasible problem of solving a system of least-squares linear equations (7.10).

Example 7.1. We calculate the allocation (6.2) for the α-Shapley value (5.7) with v

representing the glove game (2.1). By Theorem 7.1, we can solve the Poisson’s equation

(7.13) LΦfα,i
= d∗fα,i with initial condition Φfα,i

(∅) = 0, i = 1, 2, 3.

Let us denote the vertices of the unit cube by n0 = (0, 0, 0), n1 = (1, 0, 0), n2 = (0, 1, 0),

n3 = (0, 0, 1), n4 = (1, 1, 0), n5 = (1, 0, 1), n6 = (0, 1, 1), n7 = (1, 1, 1). Then the matrix
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representation of the gradient d and the marginal values fα,1, fα,2, fα,3 are given by



n0 n1 n2 n3 n4 n5 n6 n7

(n0,n1) −1 1 0 0 0 0 0 0

(n0,n2) −1 0 1 0 0 0 0 0

(n0,n3) −1 0 0 1 0 0 0 0

(n1,n4) 0 −1 0 0 1 0 0 0

(n2,n4) 0 0 −1 0 1 0 0 0

(n1,n5) 0 −1 0 0 0 1 0 0

(n3,n5) 0 0 0 −1 0 1 0 0

(n2,n6) 0 0 −1 0 0 0 1 0

(n3,n6) 0 0 0 −1 0 0 1 0

(n4,n7) 0 0 0 0 −1 0 0 1

(n5,n7) 0 0 0 0 0 −1 0 1

(n6,n7) 0 0 0 0 0 0 −1 1



,



fα,1 fα,2 fα,3

(n0,n1) 0 0 0

(n0,n2) 0 0 0

(n0,n3) 0 0 0

(n1,n4)
1−α
2

α 1−α
2

(n2,n4) α 1−α
2

1−α
2

(n1,n5)
1−α
2

1−α
2

α

(n3,n5) α 1−α
2

1−α
2

(n2,n6) 0 0 0

(n3,n6) 0 0 0

(n4,n7) 0 0 0

(n5,n7) 0 0 0

(n6,n7) α 1−α
2

1−α
2



.

Then d∗ is represented by the transpose matrix of d since the edge weight λ is constant

1. In view of the initial condition, we need to solve L0ui = d∗fα,i, where L0 is a 8 × 7

matrix equal to L with the first column removed; then ui ∈ R7 coincides with Φfα,i
for

each nonempty S ⊆ {1, 2, 3}. Since ui is unique, it is represented by

(7.14) ui = (L∗
0L0)

−1L∗
0d

∗fα,i, i = 1, 2, 3.

The extended α-Shapley value allocation table (5.8) is obtained by solving (7.14).

Remark 7.1 (Stern and Tettenhorst’s component games Stern and Tettenhorst (2019)).

Given a coalition game v ∈ GN , Stern and Tettenhorst analyzed the Poisson’s equa-

tion (7.6) on the coalition graph (3.1) with ∂iv representing player i’s marginal value.

Specifically, they defined the component games (vi)i∈N as the solution to the equation

(7.15) Lvi = d∗∂iv with vi(∅) = 0, for each i ∈ N.

Stern and Tettenhorst utilized this specific Poisson’s equation as the basis of their

theory. In this study, we presented a microfoundation of the component games (vi)i∈N

by showing vi(S) = Φi(v, S) for all i ∈ N and S ⊆ N , where Φi was defined by (3.6).

This was demonstrated in Theorem 7.1 in a much broader context, i.e., for any network

G and players’ marginal values (fi)i∈N . Finally, Stern and Tettenhorst (2019)’s main

result establishes vi(N) = ϕi(v), that is, each player’s component game value at the

grand coalition coincides with the Shapley value. This result can now be interpreted as
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a particular case of Theorems 3.1 and 7.1. In particular, these theorems enable us to

utilize the equation (7.15) for the proof of Theorem 4.1, as demonstrated in Section 9.

Remark 7.2 (From infinite to finite paths). The definition of the value ΦS
fi
(T ) in (6.2)

involves the sum of an infinite number of path integrals from S to T , even when the

underlying graph has a finite number of nodes and edges. This is because we allow

paths to contain loops. However, if two essential conditions are met – the sign changing

property of edge flows ℓ2λ(E) and reversibility (7.9) – we can effectively reduce the sum

to a finite number of appropriately weighted paths with no loops.

We say that a path (X0, X1, . . . , Xτ ) has no (internal) loop ifX0, ..., Xτ are all distinct,

with the exception of the possibility X0 = Xτ , i.e., the path itself can be a loop. If a

graph G = (V , E) is finite, then there are finitely many paths with no loops. Let NS,T

represent the collection of such no-loop paths from S to T (where S = T is possible).

For instance, in Figure 4, NS,T consists of the following three paths: (S, T ), (S, V, U, T ),

(S, V,W,U, T ). Let CS,T be the collection of all paths from S to T , i.e., X0 = S, Xτ = T ,

and Xt ̸= T for all t = 1, 2, ..., τ − 1. We now assert that the following equality holds:

(7.16) ΦS
fi
(T ) =

∑
ω̃=(X0,...,Xτ )∈NS,T

µ(ω̃)
τ∑

t=1

fi(Xt−1, Xt)

for some probability µ on NS,T , i.e.,
∑

ω̃∈NS,T
µ(ω̃) = 1 with µ(ω̃) > 0 for every ω̃.

What probability µ will make (7.16) hold? Let us say ω ∈ CS,T and ω̃ ∈ NS,T are

equivalent, denoted by ω ∼ ω̃, meaning that if all internal loops in ω are removed, it

equals ω̃. For example, in Figure 4, the path (S, V,W,U, V,W,U, T ) is equivalent to

(S, V,W,U, T ). Observe that ∼ yields a partition of CS,T , with each ω̃ ∈ NS,T represent-

ing a partition. We now define the probability distribution µ on NS,T as follows:

(7.17) µ(ω̃) = P({ω | ω ∼ ω̃}) =
∫
{ω |ω∼ω̃}

dP(ω)

where P is the law of the Markov chain, so for a path ω = (X0, X1, ..., Xτ ), we have

dP(ω) =
∏τ

t=1 pXt−1,Xt = pX0,X1pX1,X2 . . . pXτ−1Xτ .

For example, consider the general two person game in Example 3.1 with initial and

terminal states S = ∅ and T = {1}. There are two no-loop paths: ω̃1 = (∅, {1}) and

ω̃2 = (∅, {2}, {1, 2}, {1}). If we assign 1/2 to ω̃1 and (1/2)3 = 1/8 to ω̃2 according to

their lengths, it fails to sum to 1, and it will not yield a proper weight assignment.

Let {Xt}t≥0 denote the random walk (3.3) with X0 = ∅. With probability 1/2, X1 =

{1} or {2}. In the latter case X1 = {2}, due to the graph symmetry, Xt will eventually

arrive at {1} via ∅ or {1, 2} with equal probability 1/2. This and (7.17) show µ(ω̃1) =
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1/2 + 1/2 · 1/2 = 3/4 and µ(ω̃2) = 1/2 · 1/2 = 1/4. Now the path integral of ∂1v along

ω̃1 is v1, while along ω̃2 is v12 − v2, resulting in player 1’s value at {1} as 3/4 · v1 +1/4 ·
(v12 − v2) = (3v1 + v12 − v2)/4. Similarly, the path integral of ∂2v along ω̃1 is 0, while

along ω̃2 is v2 + (v1 − v12), yielding player 2’s value at {1} as (v2 + v1 − v12)/4. This

coincides with (3.7), verifying (7.16) in this case. For establishing (7.16) in general, the

sign changing property of edge flows and the reversibility of the Markov chain appear

crucial, which implies that the path integral of an edge flow along a loop and its reverse

loop must have the opposite sign while having the same probability of the loops being

realized, and thus cancel out in the sum (7.16). If, on the other hand, at least one of the

two conditions fails, the author does not expect the reduction (7.16) to hold in general.

This further signifies the importance of the two conditions, and their interplay.

8. Conclusion

This study aims to present a novel mathematical framework for cooperative games

that goes beyond existing setups in the literature. Previous research on cooperative

value allocation has primarily considered it as determined by a number of axioms.

Theorem 4.1 can be interpreted as a continuation of this direction. However, the primary

objective of this study is to propose a shift from the current axiomatic framework to a

stochastic path-integral framework. While the scope of cooperative games whose value

can be determined by the axiomatic framework may be limited, often necessitating

a restrictive set of assumptions for valuation, and the resulting value is implicit, as

evidenced in this paper, the modeling of players’ cooperative progress as a random

process in cooperative graphs and the definition of value as the average path integral

of players’ marginal values allows for the seamless incorporation of a broad range of

cooperative graphs, progressions, games, and marginal values. Moreover, the value is

explicitly represented in this framework. We believe that this change in perspective

will enable the application of cooperative game theory to various scientific domains,

particularly in machine learning and AI, where the classical Shapley value already

holds significance. In the realm of economic applications, investigating the specification

of the game network G and cooperative process law P , as well as establishing players’

marginal values f in a manner tailored to the specific economic context at hand, presents

an intriguing avenue for future research.
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9. Proof of Theorem 4.1 and Equation 6.3

Proof of Theorem 4.1. First, we claim that A1–A5 determines the operator Φ uniquely

(if exists). For each player set N , define games δS,N ∈ GN for each ∅ ≠ S ⊆ N by

δS,N(S) = 1, δS,N(T ) = 0 if T ̸= S.

We proceed by an induction on |N |. The case |N | = 1 is already from A1. Suppose the

claim holds for |N | − 1, so Φj(δS,N\{i}, ·) are determined for all i, j ∈ N and ∅ ̸= S ⊆
N \ {i}. Define the games ∆(S,S∪{i}) ∈ GN for each ∅ ≠ S ⊆ N \ {i} by

∆(S,S∪{i})(T ) = 1 if T = S or T = S ∪ {i}, ∆(S,S∪{i})(T ) = 0 otherwise.

Notice then A4 (and induction hypothesis) determines Φ for all ∆(S,S∪{i}) ∈ GN . Then

thanks to A2, to prove the claim, it is enough to show that A1–A5 can determine Φ for

the pure bargaining game δ := δN,N , because for any ∅ ≠ S ⊆ N , we can write δS,N as

the following sign-alternating sum

δS,N = ∆(S,S∪{i1}) −∆(S∪{i1},S∪{i1,i2}) +∆(S∪{i1,i2},S∪{i1,i2,i3}) − · · · ± δN,N .

By A3,
∑

S⊆N Φi(δ, S) is constant for all i ∈ N , thus equals 1/|N | by A1. Define

ui(S) := Φi(δ, S)−
1

|N |2|N | for all S ⊆ N

so that ui(∅) = − 1
|N |2|N| and

∑
S⊆N ui(S) = 0 for all i. Now observe A5 implies:

ui(S) + ui(S ∪ {i}) is constant for all S ⊆ N \ {i}, hence it is zero.

This determines ui, thus Φi(δ, ·), as follows: suppose ui(S) has been determined for all

i and |S| ≤ k − 1. Let |T | = k ≤ |N | − 1. Then we have ui(T ) = −ui(T \ {i}) for all
i ∈ T and it is constant (say ck) by A3. Using A1 and A3, we obtain

0 = δ(T ) =
∑
i∈N

Φi(δ, T ) =
∑
i∈N

(
ui(T ) +

1

|N |2|N |

)
,

yielding
∑

i∈N ui(T ) = −1/2|N |. With ui(T ) = ck for all i ∈ T , we deduce uj(T ) =
−1−2|N|kck
2|N|(|N |−k)

for all j /∈ T . This shows ui(T ) is determined for all |T | = k ≤ |N | − 1. Of

course, Φi(δ,N) = 1/|N | for all i ∈ N by A1 and A3. By induction (on |N | and on k

for each N), the proof of uniqueness of the operator Φ is therefore complete.

It remains to show that Φ represented by the average path integral (3.6) satisfies

A1–A5. As remarked earlier, Theorems 3.1 and 7.1 show that vi(S) = Φi(v, S) for all
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S ⊆ N , where (vi)i∈N is the unique solution to the Poisson’s equation

(9.1) Lvi = d∗∂iv with vi(∅) = 0, for each i ∈ N.

We will henceforth show that (vi)i∈N in place of (Φi(v, ·))i∈N satisfies A1–A5. Firstly,

A2 is clearly satisfied. To show that A1 is satisfied, we compute

L
∑
i∈N

vi =
∑
i∈N

Lvi =
∑
i∈N

d∗∂iv = d∗
∑
i∈N

∂iv = d∗dv = Lv,

since d =
∑

i∈N ∂i. Hence by unique solvability of (9.1),
∑

i∈N vi = v as desired.

Next, let σ be a permutation of N . As in ?, let σ act on ℓ2(2N) and ℓ2(E) via

σv(S) = v(σ(S)) and σf
(
S, S ∪ {i}

)
= f

(
σ(S), σ(S ∪ {i})

)
, v ∈ ℓ2(2N), f ∈ ℓ2(E).

It is easy to check dσ = σd and diσ = σdσ(i). We also have d∗σ = σd∗, since

⟨v, d∗σf⟩ = ⟨dv, σf⟩ = ⟨σ−1dv, f⟩ = ⟨dσ−1v, f⟩ = ⟨σ−1v, d∗f⟩ = ⟨v, σd∗f⟩

for any v ∈ ℓ2(2N), f ∈ ℓ2(E). Now let σ be the transposition of i, j. We have

L(σv)i = d∗∂iσv = d∗σ∂jv = σd∗∂jv = σLvj = Lσvj

which shows (σv)i = σvj by the unique solvability. Notice this corresponds to A3.

For A4, let v ∈ GN , i ∈ N , and assume ∂iv = 0. Then from (9.1) we readily get

vi ≡ 0. Fix j ̸= i, and let d̃, ∂̃j be the differential operators restricted on 2N\{i}, and

set ṽ = v−i, i.e., ṽ is the restriction of v on 2N\{i}. Let ṽj : 2
N\{i} → R be the solution

to the equation d̃∗d̃ṽj = d̃∗∂̃j ṽ with ṽj(∅) = 0. Finally, in view of A4, define vj ∈ GN by

vj = ṽj on 2N\{i} and ∂ivj = 0. Now observe that A4 will follow if we can verify that

this vj indeed solves the equation d∗dvj = d∗∂jv.

To show this, let S ⊆ N \ {i}. In fact the following string of equalities holds:

d∗dvj(S ∪ {i}) = d∗dvj(S) = d̃∗d̃ṽj(S) = d̃∗∂̃j ṽ(S) = d∗∂jv(S) = d∗∂jv(S ∪ {i})

which simply follows from the definition of the differential operators. For instance

d∗dvj(S) =
∑
T∼S

dvj(T, S) =
∑

T∼S, T ̸=S∪{i}

dvj(T, S) = d̃∗d̃ṽj(S)

where the second equality is due to ∂ivj = 0. On the other hand, since j ̸= i,

d∗∂jv(S) =
∑
T∼S

∂jv(T, S) =
∑
T∼S

∂̃j ṽ(T, S) = d̃∗∂̃j ṽ(S).

The first equality is due to the definition of vj (i.e. vj = ṽj on 2N\{i} and ∂ivj = 0), and

the last equality is due to ∂iv = 0. This verifies A4.
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Finally, we verify A5. For this, we need to verify the following claim:

(9.2) vi(S) + vi(S ∪ {i}) is constant over all S ⊆ N \ {i}.

Let S ⊆ N \ {i}, and recall d∗∂iv(S) = v(S) − v(S ∪ {i}) = −d∗∂iv(S ∪ {i}). Hence,
Lvi(S)+Lvi(S ∪{i}) = 0. Define wi ∈ ℓ2(2N) by wi(S) = vi(S ∪{i}) and wi(S ∪{i}) =
vi(S) for all S ⊆ N \{i}. Then clearly Lvi(S∪{i}) = Lwi(S) and Lvi(S) = Lwi(S∪{i}).
Thus L(vi + wi) ≡ 0, hence vi + wi ∈ N (d), meaning that vi + wi is constant. This

proves the claim, hence the theorem. □

The following proof of the transition formula (6.3) is required for the proof of Theorem

7.1. The fact Markov chain visits each state infinitely many times is implicitly used.

Proof of (6.3). We firstly show ΦS
f (S) = 0 which appears as the initial condition in

(7.10). Then we show ΦS
f (T ) = −ΦT

f (S), and finally ΦU
f (T )− ΦU

f (S) = ΦS
f (T ).

To see ΦS
f (S) = 0, consider a general sample path ω starting and ending at S, without

visiting S along the way. In other words, ω is a loop emanating from S. Let ω−1 denote

the reversed path of ω, that is, if ω visits T0 → T1 → · · · → Tτ (where T0 = Tτ = S if

ω is a loop), then ω−1 visits Tτ → · · · → T0. Observe

0 = IS
f (S)(ω)− IS

f (S)(ω)

=

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
−

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
=

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
+

τS(ω)∑
t=1

f
(
XS

t (ω), X
S
t−1(ω)

)
=

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
+

τS(ω
−1)∑

t=1

f
(
XS

t−1(ω
−1), XS

t (ω
−1)

)
.

Let P(ω) = pT0,T1pT1,T2 . . . pTτ−1,Tτ denote the probability of the sample path ω being

realized. Reversibility (7.9) implies P(ω) = P(ω−1) for any loop ω. And there is an

obvious one-to-one correspondence between a loop ω and its reverse ω−1. This implies

0 =

∫
ω

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
dP(ω) +

∫
ω

τS(ω
−1)∑

t=1

f
(
XS

t−1(ω
−1), XS

t (ω
−1)

)
dP(ω)

=

∫
ω

τS(ω)∑
t=1

f
(
XS

t−1(ω), X
S
t (ω)

)
dP(ω) +

∫
ω

τS(ω
−1)∑

t=1

f
(
XS

t−1(ω
−1), XS

t (ω
−1)

)
dP(ω−1)

= ΦS
f (S) + ΦS

f (S)



COOPERATIVE NETWORKS AND f -SHAPLEY VALUE 33

S T S T 

Figure 5. ω = ω1 ◦ ω2 ◦ ω3 ◦ ω4 and its pair ω′ = ω−1
1 ◦ ω2 ◦ ω−1

3 ◦ ω4.
By reversibility, they have the same probability of being realized.

yielding ΦS
f (S) = 0 as desired.

Next, we will show ΦS
f (T ) = −ΦT

f (S) for S ̸= T . Consider a general finite sample

path ω of the Markov chain (3.3) starting at S, visiting T , then returning to S (this

happens with probability 1). We can split this journey into four subpaths:

ω1: the path returns to S m ∈ N ∪ {0} times without visiting T ,

ω2: the path begins at S and ends at T without returning to S,

ω3: the path returns to T n ∈ N ∪ {0} times without visiting S,

ω4: the path begins at T and ends at S without returning to T .

Thus ω = ω1 ◦ ω2 ◦ ω3 ◦ ω4 is the concatenation of the ωi’s, and the probability P(ω)

of this finite sample path being realized satisfies P(ω) = P(ω1)P(ω2)P(ω3)P(ω4).

Define a pairing ω′ of ω by ω′ := ω−1
1 ◦ ω2 ◦ ω−1

3 ◦ ω4. This is another general sample

path starting at S, visiting T , then returning to S. Then we have P(ω) = P(ω′) because

P(ω1) = P(ω−1
1 ) and P(ω3) = P(ω−1

3 ) by (7.9), and moreover,

IS
f (T )(ω) + IS

f (T )(ω
′) = 2

τT (ω2)∑
t=1

f
(
XS

t−1(ω2), X
S
t (ω2)

)
,

because the loops ω1 and ω−1
1 aggregate f with opposite signs, hence they cancel out in

the above sum. Now consider ω̃ := ω3 ◦ ω−1
2 ◦ ω1 ◦ ω−1

4 and ω̃′ := ω−1
3 ◦ ω−1

2 ◦ ω−1
1 ◦ ω−1

4 .

(ω̃, ω̃′) represents a pair of general sample paths starting at T , visiting S, then returning

to T . We then deduce

IT
f (S)(ω̃) + IT

f (S)(ω̃
′) = 2

τS(ω
−1
2 )∑

t=1

f
(
XT

t−1(ω
−1
2 ), XT

t (ω
−1
2 )

)
= −2

τT (ω2)∑
t=1

f
(
XS

t−1(ω2), X
S
t (ω2)

)
= −

(
IS
f (T )(ω) + IS

f (T )(ω
′)
)

because f(U, V ) = −f(V, U) for any edge (U, V ). Due to the one-to-one correspondence

between the paths ω, ω′, ω̃, ω̃′, and P(ω) = P(ω′) = P(ω̃) = P(ω̃′) from (7.9), the
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desired identity ΦS
f (T ) = −ΦT

f (S) now follows by integration:∫
ω

[
IT
f (S)(ω̃) + IT

f (S)(ω̃
′)
]
dP(ω) =

∫
ω

IT
f (S)(ω̃)dP(ω̃) +

∫
ω

IT
f (S)(ω̃

′)dP(ω̃′)

= 2ΦT
f (S),

and similarly, ∫
ω

[
IS
f (T )(ω) + IS

f (T )(ω
′)
]
dP(ω) = 2ΦS

f (T ).

Finally, to show ΦU
f (T )− ΦU

f (S) = ΦS
f (T ) for distinct S, T, U , we proceed

IU
f (T )− IU

f (S) =

τT∑
t=1

f
(
XU

t−1, X
U
t

)
−

τS∑
t=1

f
(
XU

t−1, X
U
t

)
= 1τS<τT

τT∑
t=τS+1

f
(
XU

t−1, X
U
t

)
− 1τT<τS

τS∑
t=τT+1

f
(
XU

t−1, X
U
t

)
.

By taking expectation, we obtain the following via the Markov property

E[IU
f (T )]− E[IU

f (S)] = P({τS < τT})ΦS
f (T )− P({τT < τS})ΦT

f (S)

=
(
P({τS < τT})ΦS

f (T ) + P({τT < τS})
)
ΦS

f (T ) = ΦS
f (T ),

which proves the transition formula ΦU
f (T )− ΦU

f (S) = ΦS
f (T ). □
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André Casajus and Frank Huettner. Null players, solidarity, and the egalitarian shapley

values. Journal of Mathematical Economics, 49(1):58–61, 2013.
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