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Abstract. This paper addresses robust finance, which is concerned with
the development of models and approaches that account for market un-
certainties. Specifically, we investigate the Vectorial Martingale Optimal
Transport (VMOT) problem, the geometry of its solutions, and its appli-
cation with robust option pricing problems in finance. To this end, we
consider two-period market models and show that when the spatial di-
mension d (the number of underlying assets) is 2, the extremal model for
the cap option with a sub- or super-modular payout reduces to a single
factor model in the first period, but not in general when d > 2. The
result demonstrates a subtle relationship between spatial dimension, cost
function supermodularity, and their effect on the geometry of solutions to
the VMOT problem. We investigate applications of the model to finan-
cial problems and demonstrate how the dimensional reduction caused by
monotonicity can be used to improve existing computational methods.
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1. Introduction

In mathematical finance, Knightian uncertainty [28] refers to financial risk
resulting from mis-specification or uncertainty about the true model of the
physical world. People became more concerned about such risks following
the 2007-2008 financial crisis, according to [33]. One approach to addressing
this issue is model independent finance, which was initially discussed in [25],
which offered a novel way of pricing financial derivatives based on the concept
of model-independent arbitrage.

In many situations, available data allows one to reconstruct distributions
of individual assets at particular times [6]. Nevertheless, uncertainty arises
concerning the joint distributions between different assets, or the same asset
at different times. This dependence structure can then be modeled in various
ways; model independent pricing problems determine the largest or smallest
possible price of a specific derivative that is consistent with the available data
(depending on the values of multiple assets and/or numerous times).

Problems are well researched when the payoff function is dependent on
the values of two (or more) assets at a single future time [23], with known
individual distributions but uncertain dependence structure. In this scenario,
the model independent pricing problem is equivalent to the classical problem
known as optimal transport in the literature. The variant occurring where
the payout is dependent on the value of a single asset at two (or more)
future times has received a lot of attention in recent years. In this situation,
the absence of arbitrage compels the unknown coupling between the known
distributions to be a martingale, and the resulting optimization problem with
this additional constraint is known as martingale optimal transport problem.

In real markets, there are many important pricing and risk management
problems that fall outside the scope of these situations. For instance, indi-
vidual asset price distributions can typically be estimated at many different
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times, and this information is not incorporated in the standard optimal trans-
port problem.1 Our attention is drawn here to a situation in which the distri-
butions of multiple individual asset prices are known at two future dates, but
nothing about the dependence structure is known (either between distinct as-
sets or between different assets at different times). As options on individual
stocks with a specific maturity and a wide range of strike prices are often
frequently traded, the prices of these can be used to infer the distribution
of the stock price at that maturity, known as the implied risk netural mea-
sure. The optimization problem we investigate here, known in the literature
as Vectorial Martingale Optimal Transport (also known as multi-marginal
martingale optimal transport) problem, yields upper and lower bounds on
the fair prices of contracts depending on several assets at two future times.

Regarding the geometry of solutions to the VMOT problems, examples
worked out in [14, 31] suggest the following conjecture: for a certain class
of payoff functions, the maximium arbitrage free price arises when the joint
distribution (or coupling) of the underlying assets at the first maturity time
is perfectly co-monotone. If this is true, not only does the conjecture provide
insight into the extremal dependence structure of asset prices (specifically,
the conjecture asserts the existence of a single factor market model leading
to the maximum price), but it also significantly reduces the computational
complexity; because the dependence structure of assets at the first time is
known explicitly, only the dependence structure at the second time, as well as
the martingale coupling structure between the times, needs to be computed.

In this paper, we address this conjecture by demonstrating that it is true
for derivatives depending on two assets and providing a counterexample for
derivatives depending on three or more assets. We then exploit the monotone
structure in the case of two assets to refine a numerical method developed in
[15], resulting in faster and more accurate computations.

The payoff functions studied in this paper cover a wide range of contracts
that naturally arise in applications. These include the model independent

1Even if the payoff depends only on the values of two assets at a single time, information
about the distributions at earlier times affects the allowable dependence structures at
that time; these constraints are not reflected in the formulation of the standard optimal
transport problem, but are captured by the model we study here.
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pricing of European calls and puts on a basket, as well as the maximums and
minimums of numerous assets, when the distributions of the individual asset
prices are known both at maturity and earlier.

This paper is organized as follows. In Section 2, we explain the vectorial
martingale optimal transport problem. Section 3 examines the formulation
and resolution of the monotonicity conjecture as well as counterexamples.
Section 4 introduces a hybrid version of the VMOT problem and presents
our numerical method and results. Section 6 provides miscellaneous proofs.

2. Model

We denote [n] := {1, 2, ..., n} for n ∈ N, and let P(Ω) denote the set of
all probability measures (distributions) over a set Ω. Let ~µ = (µ1, ..., µd),
~ν = (ν1, ..., νd) denote vectors of probability measures (called marginals) on
R. Throughout the paper, we assume that all distributions have a finite first
moment, including the marginals µi, νi, i ∈ [d]. We consider the following
space of Vectorial Martingale Transports (VMT) from ~µ to ~ν (see [31]):

VMT(~µ, ~ν) := {π ∈ P(R2d) | π = Law(X, Y ), Eπ[Y |X] = X,(2.1)

Law(Xi) = µi, Law(Yi) = νi for all i ∈ [d]},

where X = (X1, ..., Xd), Y = (Y1, ..., Yd) ∈ Rd are random vectors. For
a distribution π ∈ P(R2d), we denote by πX ∈ P(Rd) and πY ∈ P(Rd),
respectively, its first and second time marginals, that is, if π = Law(X, Y ),
then πX = Law(X) and πY = Law(Y ). We will denote by Π(~µ) the set of
couplings of the µi, that is,

Π(~µ) := {σ ∈ P(Rd) | σ = Law(X), Law(Xi) = µi for all i ∈ [d]}.(2.2)

Clearly, if π ∈ VMT(~µ, ~ν), then πX ∈ Π(~µ) and πY ∈ Π(~ν).
It is known that the set VMT(~µ, ~ν) is nonempty if and only if every pair

of marginals µi, νi is in convex order, defined by

µi �c νi if and only if
∫
fdµi ≤

∫
fdνi for every convex function f.

Thus, we will always assume µi �c νi for all i ∈ [d] in this paper.
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Let c : R2d → R be a (cost, or option payoff) function. We define the
vectorial martingale optimal transport (VMOT) problem as

maximize Eπ[c(X, Y )] over π ∈ VMT(~µ, ~ν).(2.3)

A solution π to (2.3) will be called a vectorial martingale optimal transport,
or VMOT.

Each pair of random variables (Xi, Yi) represents an asset price process
at two future maturity times 0 < t1 < t2, and by assuming zero interest
rate, each martingale measure π ∈ VMT(~µ, ~ν) represents the risk neutral
probability under which (X, Y ) ∈ R2d becomes an Rd-valued (one-period)
martingale. We call π a vectorial martingale transport, or VMT, if its one-
dimensional marginals ~µ, ~ν are given, which condition is inspired by [2, 11,
13, 16, 23, 25]. [6] demonstrated that such marginal distribution information
can be obtained from market data, providing theoretical support for the
model-free martingale optimal transportation approach we consider in this
paper. Finally, in financial terms, the cost function c = c(x1, ..., xd, y1, ..., yd)

can represent an option whose payoff is fully determined at the terminal
maturity t2 by prices (X, Y ) of the d assets at the two future times t1, t2.

Because π cannot be observed in the financial market, we are led to consider
the set of all possible laws VMT(~µ, ~ν) given the marginal information ~µ, ~ν.
With this knowledge, the max / min value in (2.3) can be interpreted as the
upper / lower arbitrage-free price bound for the option c derived from the
market data. We defined (2.3) as a maximization problem, but note that it
can also describe a minimization problem by simply changing c to −c.

To ensure that the problem (2.3) is well-defined, we will make the following
assumptions throughout the paper. When considering a VMOT problem
given a cost function c, we assume that the marginals satisfy the following
condition: there exist continuous functions vi ∈ L1(µi), wi ∈ L1(νi), i ∈ [d],
such that |c(x, y)| ≤

∑d
i=1

(
vi(xi) + wi(yi)

)
. Note that this ensures∣∣Eπ[c(X, Y )]

∣∣ ≤∑
i

(
Eµi [vi(Xi)] +Eνi [wi(Yi)]

)
<∞ for any π ∈ VMT(~µ, ~ν).

This in turn implies that the problem (2.3) is attained (i.e., admits an opti-
mizer) whenever c is upper-semicontinuous.
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The following cost function will be useful to illustrate many of the results in
this paper. It represents the assets’ mutual covariances at two future times:

(2.4) c(x, y) =
∑

1≤i,j≤d

(aijxixj + bijxiyj + cijyiyj).

Note that for any π ∈ VMT(~µ, ~ν), we have Eπ[XiYj] = Eπ[Eπ[XiYj|X]] =

Eπ[XiEπ[Yj|X]] = Eπ[XiXj] by the martingale constraint Eπ[Y |X] = X, and
Eπ[X2

i ] =
∫
R x

2dµi(x), Eπ[Y 2
j ] =

∫
R y

2dνj(y) are fixed by marginal constraint.
Hence, we can reduce the cost (2.4) as the following form

(2.5) c(x, y) =
∑

1≤i<j≤d

(aijxixj + bijyiyj).

We shall assume aij ≥ 0, bij ≥ 0. In particular, if d = 2, this becomes

(2.6) c(x, y) = ax1x2 + by1y2

so that Eπ[c] = aEπ[X1X2] + bEπ[Y1Y2] represents a weighted sum of mutual
covariances between X1, X2 and between Y1, Y2 under the market model π.

To provide a motivation for studying the cost function of the form (2.5),
consider a portfolio consisting of the assets with prices Y1, ..., Yd at the ter-
minal maturity t2, with weights w1, ..., wd > 0, so that the price is

∑d
i=1wiYi.

The variance is a commonly used measure of the risk of the portfolio:

Varπ

( d∑
i=1

wiYi

)
= Eπ

[( d∑
i=1

wiYi

)2]
−
( d∑

i=1

wiEπ[Yi]

)2

given π ∈ VMT(~µ, ~ν).

In our VMOT framework, the term (
∑d

i=1 wiE[Yi])
2 does not depend on

π, since the individual distributions are assumed to be known. Finding the
VMOT π yielding the maximal variance, or risk, is thus equivalent to max-
imizing EπY [(

∑
iwiYi)

2] =
∫
Rd(
∑

iwiyi)
2dπY (y). This represents a classical,

(multi-marginal) optimal transport (OT) problem with cost function

(2.7) c(x, y) = c(y) =

( d∑
i=1

wiyi

)2

.

Notice this cost is equivalent to the cost (2.5) with each aij = 0 and bij = wiwj

in the VMOT problem, again due to the given marginal information.
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Similar to OT, the VMOT problem reflects a worst case risk scenario in
a situation when, in addition to the distributions νi at some future time
t2, the distributions µi of the assets at an earlier time t1 < t2 are known.
In this situation, one may still try to evaluate the risk, or variance of the
portfolio’s value

∑d
i=1 wiYi at time t2, but now incorporating the extra in-

formation coming from knowledge of distributions µi at t1. This leads to
the VMOT problem with cost (2.7). As a result, the VMOT approach can
yield tighter bounds on the variance of the portfolio than the classical OT
approach even though the cost functions here depend only on the terminal
prices Y (that is, the intermediate prices X do not directly affect the value of
the portfolio at the terminal time). The reason is that only couplings πY of
the νi which dominate some coupling πX of the µi in convex order can arise
as feasible couplings in VMOT, whereas all coupings in Π(~ν) are allowed as
candidate optimizers in the classical OT. In Section 4, this phenomenon will
be demonstrated numerically using empirical financial data.

It is worth noting that the maximal implied variance, which is the solution
of the VMOT problem when the marginals are the risk-neutral distributions
of the Yi, differs from the physical variance, which is derived by a physi-
cal joint distributions of the Yi. Importantly, option prices can be used to
calculate the risk-neutral variance, which is widely used as a proxy for true
variance. Empirical evidence suggests that option implied ex-ante higher mo-
ments hold predictive power for future stock returns [10]. This indicates that
option prices encompass market information and reflect investors’ expecta-
tions of future stock moments [26]. The VMOT approach, which derives
marginal distributions from option prices, resonates with these findings.

The VMOT problem belongs to the class of infinite-dimensional linear
programming, thus the problem admits a dual programming problem. For
the maximization problem in (2.3), its dual problem is given by the following
minimization problem

(2.8) inf
(φi,ψi,hi)∈Ξ

d∑
i=1

( ∫
φidµi +

∫
ψidνi

)
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where Ξ consists of triplets φi, ψi : R → R ∪ {+∞} and hi : Rd → R such
that φi ∈ L1(µi), ψi ∈ L1(νi), hi is bounded for every i ∈ [d], and

d∑
i=1

(
φi(xi) + ψi(yi) + hi(x)(yi − xi)

)
≥ c(x, y) ∀(x, y) ∈ R2d(2.9)

where x = (x1, ., , , xd), y = (y1, ..., yd). In this regard, (2.3) may be referred
to as the primal problem.

The dual problem also has a concrete financial meaning. Specifically, (2.9)
describes a semi-static super-replicate of the path-dependent payoff c, where
φi(Xi), ψj(Yj) are the European options written on the individual underlying
at a specific time, and hi is the amount to hold ith asset for the delta hedging.
It is worth noting that hi is a function of the past prices of all assets {Xi}di=1,
and the left hand side of (2.9) yields the overall payoff of the superhedging
portfolio (φi, ψi, hi)

d
i=1 given the price path (x, y). If the problem (2.3), on

the other hand, is a minimization problem, then the dual problem represents
an optimal subhedging problem for which the inequality in (2.9) is reversed.

The value (2.8) represents the lowest possible cost to construct a super-
hedging portfolio, thus we are naturally interested in finding such an optimal
(cheapest) superhedging portfolio. However, it has already been shown that
the dual problem (2.8) cannot be solved within the class Ξ in general even
when d = 1, i.e., the option c depends on a single asset (see [3, 5]), unless
some suitable regularity assumption is made on the payoff function c [4]. As
a result, a generalized notion of dual attainment, i.e., solvability of the dual
problem, was introduced in [5] for the case d = 1 and then in [31] for d ≥ 2.
More specifically, [31] presents the following dual attainment result.

Theorem 2.1 ([31]). Let (µi, νi)i∈[d] be irreducible pairs of marginals on R.
Let c(x1, ..., xd, y1, ..., yd) be an upper-semicontinuous cost such that |c(x, y)| ≤∑d

i=1

(
vi(xi) + wi(yi)

)
for some continuous vi ∈ L1(µi), wi ∈ L1(νi). Then

there exists a dual minimizer, which is a triplet of functions (φi, ψi, hi)
d
i=1

that satisfies (2.9) tightly in the following pathwise manner:
d∑
i=1

(
φi(xi) + ψi(yi) + hi(x)(yi − xi)

)
= c(x, y) π − a.s.(2.10)

for every VMOT π which solves the primal problem (2.3).
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The term pathwise denotes that (2.9) and (2.10) hold in a pathwise manner,
that is, the equality (2.10) is satisfied for π - almost every price path (x, y),
and that we do not impose an integrability condition on the dual minimizer.

We note that the irreducibility condition imposed on each pair of marginals
generically holds for any pair of probability distributions µ �c ν on the line
in convex order. Furthermore, if it happens that the pair is not irreducible,
one can perturb it in an arbitrarily small way to make the perturbed pair
irreducible. We refer to [5] for more details about irreducibility.2

3. Monotone geometry of VMOT

In this section, we present our theoretical findings. To begin, we will
discuss the concept of sub/supermodularity of functions on Rd.

Definition 3.1. For a, b ∈ Rd, set a∨b to be the componentwise maximum of
a, b and a∧b to be the componentwise minimum, so that (a∨b)i = max{ai, bi}
and (a∧ b)i = min{ai, bi}. Let d ≥ 2, and β : Rd → R∪{+∞} be a function.
Then submodularity and supermodularity of β reads, for all a, b ∈ Rd,

β(a) + β(b) ≥ β(a ∨ b) + β(a ∧ b),(3.1)

β(a) + β(b) ≤ β(a ∨ b) + β(a ∧ b),(3.2)

respectively. In addition, a function is called strictly sub / supermodular if
the above inequality is strict for all a, b ∈ Rd with {a, b} 6= {a ∨ b, a ∧ b}.

If β is twice differentiable, then β is supermodular if ∂2β
∂xi∂xj

≥ 0 for all

i 6= j, and is strictly supermodular if ∂2β
∂xi∂xj

> 0 for all i 6= j. Hence, for
example, the function x 7→

∑
1≤i<j≤d xixj is strictly supermodular.

Definition 3.2. i) {a∨ b, a∧ b} is called monotone rearrangement of {a, b}.
ii) A set A ⊆ Rd is called monotone if for any a, b ∈ A, {a, b} = {a∨b, a∧b}.
iii) A measure µ ∈ P(Rd) is called monotone (or monotonically supported)
if there is a monotone set A such that µ is supported on A, i.e., µ(A) = 1.
iv) Given a vector of probabilities ~µ = (µ1, ..., µd) where each µi ∈ P(R), the
unique probability measure χ~µ ∈ P(Rd), which is monotone and has µ1, ..., µd

2For ξ ∈ P(R), its potential function is given by uξ(x) :=
∫
|x−y|dξ(y). Then we say that

a pair of probabilities µ �c ν in convex order is irreducible if the set I := {x ∈ R |uµ(x) <
uν(x)} is a connected interval containing the full mass of µ, i.e., µ(I) = µ(R).
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as its marginals (i.e., χ~µ ∈ Π(~µ)), is called the monotone coupling of ~µ. Note
that χ~µ = (F−1

µ1
, F−1

µ2
, , ..., F−1

µd
)#L[0,1],3 where each F−1

µi
denotes the inverse

of the cumulative distribution function of the µi (i.e., the quantile function),
and L[0,1] denotes the uniform probability measure on the interval [0, 1].

Fact 1. It is known that if c is supermodular, the monotone coupling χ~µ
arises as a maximizer of Eγ[c(X)] =

∫
Rd c(x) dγ(x) among all γ ∈ Π(~µ), and

that χ~µ is the unique maximizer if c is strictly supermodular.

The following is the main question we will investigate in this section.

Conjecture 1. Let d ≥ 2, µi �c νi for i = 1, ..., d, and the cost function be
given by c(x, y) = c1(x) + c2(y) where x, y ∈ Rd and c1, c2 are supermodular.
Then there exists a VMOT π for the problem (2.3) whose first time marginal
πX is the monotone coupling of ~µ = (µ1, ..., µd). Moreover, if c1 is strictly
supermodular, then every VMOT π has monotone first marginal πX = χ~µ.

Monotonicity of optimizers in the classical optimal transport problem for
supermodular costs is well known [9, 32]. Results asserting higher dimen-
sional determininstic solutions, such as those of Brenier [7] (for two marginals)
and Gangbo-Święch [18] (for three or more marginals) regarding the cost
function c(x) =

∑
1≤i<j≤d xi · xj, and generalizations to other cost functions

[8, 17, 30] (for two marginals) [22, 27, 34, 35] (for several marginals) can be
thought of as higher dimensional analogues of this monotonicity. Our conjec-
ture can be thought of as a vectorial martingale transport version of such a
stream of results; indeed, note that if each µi is a dirac mass (corresponding
to the case when the first time is the present), then the VMOT problem
reduces to the classical (multi-marginal) optimal transport problem on the
νi’s. The following is a heuristic for the conjecture:
Heuristic. Given marginals ~µ = (µ1, ..., µd) and ~ν = (ν1, ..., νd) and cost
function c(x, y) = c1(x)+c2(y) for the vectorial martingale optimal transport
problem (2.3), where c1, c2 are both supermodular, in view of Fact 1, the
ideal situation would be that the first and second time marginals of π ∈
VMT(~µ, ~ν) (denoted as πX , πY ) are equal to the monotone coupling of ~µ
3Given a measurable map F : X → Y and a measure µ on X , the push-forward of µ by F ,
denoted by F#µ, is a measure on Y satisfying F#µ(A) = µ(F−1(A)) for every A ⊆ Y.
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μ1

μ2

ν1

ν2

Time	1 Time	2

Law(X)
Law(Y)

(a) Generic marginals of a vectorial martingale transport.

μ1

μ2

ν1

ν2

Time	1 Time	2
Law(Y)

Law(X)

(b) A martingale transport with monotone first time marginal.

Figure 1. Conjecture 1 asserts that the martingale transport
in (1b) can be superior to the one in (1a) for the problem (2.3)
due to the supermodularity of c1, c2. We overlap Law(X) with
Law(Y ) in (1b) to emphasize they must be in convex order.

and ~ν respectively, i.e., πX = χ~µ and πY = χ~ν , such that Eπ[c(X, Y )] =

Eχ~µ [c1(X)] + Eχ~ν [c2(Y )]. However, the martingale constraint imposed on π
implies the convex order condition πX �c πY . Now even if µi �c νi for all
i, the monotone couplings χ~µ and χ~ν may not satisfy the convex order in
general, in which case the ideal case is not feasible. As an example, consider
the following: Let d = 2 and µ1 = µ2 be the uniform probability measure on
the interval [−1, 1], ν1 be uniform on [−3, 3], and ν2 be uniform on [−2, 2].
Then χ~µ is the uniform probability on l1 = {(x1, x2) ∈ R2 |x1 = x2, x1 ∈
[−1, 1]}, and χ~ν is uniform on l2 = {(y1, y2) ∈ R2 | y2 = 2

3
y1, y1 ∈ [−3, 3]}.

Then χ~µ, χ~ν cannot be in convex order because l1 * l2. This shows that the
ideal situation, i.e., χ~µ �c χ~ν , is infeasible in general.
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Nevertheless, it is plausible that a VMOT π may still couple the marginals
~µmonotonically,4 i.e., a VMOT π sets πX = χ~µ thereby maximizing EπX [c1(X)],
then seek πY which satisfies χ~µ �c πY while πY is as close as the ideal χ~ν , so
that πY maximizes EπY [c2(Y )] under the constraint πY ∈ Π(~ν) and χ~µ �c πY .
This is our heuristic behind the conjecture; see Figure 1.

[14] showed that the conjecture is correct when the cost function is of the
quadratic form (2.7) and the marginals µi, νi satisfy a special condition known
as linear increment of marginals, which is the case if e.g. µi, νi are gaussians
with increasing variance. In fact, [14] showed that under these conditions,
πX of a VMOT π is distributed on a straight line in Rd. This implies that
the assumption imposed on the cost and marginal is very restrictive and the
conclusion cannot be extended to general marginals; see [31, Example 4.5]
for a related discussion. In this paper, we will prove that the conjecture is
indeed correct when d = 2 (without any particular condition imposed on the
marginals), but incorrect in general when d ≥ 3. This dimensional bifurca-
tion stands in stark contrast to the standard optimal transport problem, in
which Fact 1 holds for every d ≥ 2. The distinction is due to the convex
ordering constraint πX �c πY , which every martingale transport π must sat-
isfy. The rest of this section will go over our findings in greater detail. To
begin, we recognize that the following relationship between modularity and
convex conjugate is closely related to our conjecture, which also contrasts
intriguingly with standard optimal transport problems.

Definition 3.3. For a proper function f : Rd → R ∪ {+∞}, its convex
conjugate f ∗ is the following convex lower semi-continuous function

(3.3) f ∗(y) = sup
x∈Rd

x · y − f(x), y ∈ Rd.

It is well known that f ∗∗ = (f ∗)∗ is the largest convex lower semi-continuous
function satisfying f ∗∗ ≤ f . We call f ∗∗ the convex envelope of f .

Proposition 3.4. i) If β on Rd is submodular, then β∗ is supermodular.
ii) If d = 2 and β on R2 is supermodular, then β∗ is submodular.
iii) If β on R2 is sub/supermodular, then β∗∗ is also sub/supermodular.
4It can be shown that for any γ ∈ Π(~µ), there exists π ∈ VMT(~µ, ~ν) such that πX = γ.
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An appendix contains a proof of the proposition. Now we present our first
main result, which provides an affirmative case for the conjecture.

Theorem 3.5. Conjecture 1 is true if d = 2. More specifically, let c(x, y) =

c1(x1, x2) + c2(y1, y2) where c1, c2 are supermodular. Assume the same condi-
tion as in Theorem 2.1, and the second moments of µ1, µ2 are finite. Then:
i) There exists a VMOT π such that its first time marginal πX is the mono-
tone coupling of µ1, µ2.
ii) If c1 is strictly supermodular, then every VMOT π satisfies that its first
time marginal πX is the monotone coupling of µ1, µ2.

Proof. Theorem 2.1 implies there exists an optimal dual (φi, ψi, hi)i such that
d∑
i=1

(
φi(xi) + ψi(yi) + hi(x)(yi − xi)

)
≥ c(x, y) ∀x = (x1, ..., xd), y = (y1, ..., yd),

d∑
i=1

(
φi(xi) + ψi(yi) + hi(x)(yi − xi)

)
= c(x, y) π − a.s.,

for every VMOT π which solves the problem (2.3). We define

β(y) =
d∑
i=1

ψi(yi)− c2(y),

and rewrite the above as

c1(x)−
d∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)
≤ β(y) ∀(x, y) ∈ Rd × Rd(3.4)

c1(x)−
d∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)
= β(y) π − a.s..(3.5)

As a result of the left hand side being linear in y, we have

c1(x)−
d∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)
≤ β∗∗(y) ∀(x, y) ∈ Rd × Rd(3.6)

c1(x)−
d∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)
= β∗∗(y) π − a.s..(3.7)
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Then by equating yi = xi, (3.6) yields

c1(x)−
d∑
i=1

φi(xi) ≤ β∗∗(x) ∀x ∈ Rd.(3.8)

On the other hand, for any VMOT π = πx ⊗ πX ,5 by integrating (3.7) with
respect to the martingale kernel πx(dy), we obtain

c1(x)−
d∑
i=1

φi(xi) =

∫
β∗∗(y)dπx(y) πX − a.e. x,(3.9)

since
∫
h(x)·(y−x)dπx(y) = 0 due to the martingale property

∫
y dπx(y) = x.

Now we have
∫
β∗∗(y)dπx(y) ≥ β∗∗(x), since β∗∗ is convex. In view of this,

(3.8) yields

c1(x)−
d∑
i=1

φi(xi) = β∗∗(x) πX − a.s..(3.10)

Set c̃(x) := c1(x)− β∗∗(x). We arrive at
d∑
i=1

φi(xi) ≥ c̃(x) ∀x ∈ Rd,(3.11)

d∑
i=1

φi(xi) = c̃(x) πX − a.s..(3.12)

(3.11) and (3.12) implies that for any VMOT π, its first time marginal πX

solves the optimal transport problem with the cost c̃ and marginals µ1, ..., µd,
that is, πX maximizes E[c̃(X)] among all couplings of µ1, ..., µd.

Now assume d = 2 and c1 is strictly supermodular. Then by the fact that β
is submodular and Proposition 3.4 iii), c̃ is also strictly supermodular. Then
Fact 1 implies that πX must be the monotone coupling of µ1, µ2. This proves
part ii) of the theorem.

5Any π ∈ P(Rd × Rd) can be written as π = πx ⊗ πX , where πx ∈ P(Rd) is called a
kernel (or disintegration) of π. When π represents the joint distribution of the Rd-valued
random variables X and Y , denoted as π = Law(X,Y ), then πx represents the conditional
distribution of Y given X = x, that is, πx(B) = P(Y ∈ B |X = x). The disintegration
allows us to iteratively integrate as

∫
f(x, y)dπ(x, y) =

∫∫
f(x, y)dπx(y)dπX(x).
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To prove part i), fix δ > 0, and choose a VMOT π for the cost cδ(x, y) =

c1(x) + δx1x2 + c2(y).6 Then by part ii) we have πX = χ~µ, i.e., πX is the
monotone coupling of ~µ = (µ1, µ2). Moreover, since π is a VMOT, its second
time marginal πY must maximize Eγ[c2(Y )] among all couplings γ ∈ Π(ν1, ν2)

satisfying the convex order χ~µ �c γ. This in turn implies that π is a VMOT
for the cost cδ(x, y) for every δ > 0. Letting δ ↘ 0, we deduce that π is still
a VMOT for the cost c(x, y) = c1(x) + c2(y). This proves part i). �

The preceding proof, combined with Proposition 3.4 iii), also yields the
following mirror statement. We say that a set A in R2 is called anti-monotone
if the set {x = (x1, x2) ∈ R2 | (−x1, x2) ∈ A} is monotone. Then a measure
µ ∈ P(R2) is called anti-monotone if µ is supported on an anti-monotone set.

Corollary 3.6. Let d = 2, c(x, y) = c1(x1, x2) + c2(y1, y2) where c1, c2 are
submodular. Assume the same condition as in Theorem 2.1, and that the
second moments of µ1, µ2 are finite. Then:
i) There exists a VMOT π such that its first time marginal πX is the anti-
monotone coupling of µ1, µ2.
ii) If c1 is strictly submodular, then every VMOT π satisfies that its first time
marginal πX is the anti-monotone coupling of µ1, µ2.

Remark 3.7. A financial interpretation of these results may be given as
follows. For a two-period cap7 whose payoff depends on two underlying as-
sets, Theorem 3.5 together with Corollary 3.6 describes the extreme market
model which attains the extremal of the price bounds: the (anti-)monotonicity
implies that there exists a market model under which the two assets are con-
trolled by a single factor in the first period. Furthermore, if c1 is strictly sub
or supermodular, then every extremal market model exhibits this property.

In Theorem 3.5, if c1 is not strictly supermodular, then the first marginal
πX of a VMOT π is not necessarily monotone, as explained in the following.

Example 3.8. The strict supermodularity of c1 is necessary for part ii) of
Theorem 3.5. To construct a counterexample VMOT π via duality, we take a
6Only here is the finite second moment assumption used to ensure that x1x2 is integrable.
7Option payoffs of the form c(x, y) = c1(x)+c2(y) are sometimes referred to as a two-period
cap, where x = (x1, ..., xd) denote d-assets price at the first maturity t1 and y = (y1, ..., yd)
are the corresponding assets price at the second maturity t2.
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convex function ψ1(y1) = 1
3
|y1|3 and its convex conjugate ψ2(y2) = ψ∗1(y2) =

2
3
|y2|

3
2 . Then ψ1(y1) + ψ2(y2) ≥ y1y2 for all y1, y2 ∈ R, and

Γ{ψ1,ψ2} := {(y1, y2) ∈ R2 | ψ1(y1) + ψ2(y2) = y1y2}(3.13)

= {(y1, y2) | y2 = ψ′1(y1)}

= {(y1, y2) | y2 = |y1|2 if y1 ≥ 0, y2 = −|y1|2 if y1 ≤ 0}.

Let z = (−1, 1), w = (1,−1), and take πX = 1
2
δz + 1

2
δw ∈ P(R2). Then

choose a martingale kernel πz, πw ∈ P(R2) that satisfies∫
R2

x πz(dx) = z,

∫
R2

x πw(dx) = w, and πz(Γ{ψ1,ψ2}) = πw(Γ{ψ1,ψ2}) = 1.

Such a choice is possible because conv(Γ{g1,g2}) = R2. We then define a
martingale measure π via π = πx ⊗ πX , i.e., its first time marginal is πX

and its kernel is {πz, πw}. Now take c(x, y) = y1y2 (so that c1(x) = 0),
φ1 = φ2 = h1 = h2 = 0, and notice that {φi, ψi, hi}i=1,2 and π then jointly
satisfy the optimality condition (2.9), (2.10). This implies that π is a VMOT
in the class VMT(µ1, µ2, ν1, ν2), where µ1, µ2, ν1, ν2 are the one-dimensional
marginals of π. However, by construction, πX = 1

2
δz + 1

2
δw is not monotone.

As previously shown, part iii) of Proposition 3.4 was used as a key to the
proof of Theorem 3.5. Because iii) is a direct consequence of i) and ii), where
ii) is restricted to the two-dimensional domain, we are led to ask if part ii)
can be extended for d ≥ 3 as part i). But unfortunately, this is not the case.

Remark 3.9. There exists a supermodular function β : R3 → R for which
β∗ is not submodular. To see this, let β(x) = 1

2
x · Ax with a symmetric

positive-definite d × d matrix A. Then β∗(z) = 1
2
z · A−1z. Now if d ≥ 3,

it is easy to find such an A with all positive entries and that A−1 also has
some positive off-diagonal entries. This implies that β is supermodular and
∂2β∗

∂xi∂xj
> 0 for some i 6= j. But the latter implies that β∗ is not submodular.

Despite Remark 3.9, we continue to ask whether part iii) of Proposition
3.4 can hold true for d ≥ 3, as it is the only part required to prove Theorem
3.5. It turns out this is also not the case, as the following example shows. In
the following, conv(A) denotes the convex hull of a set A in a vector space.
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Example 3.10 (Existence of a submodular function on R3 whose convex
envelope is not submodular). Let n+

0 = (0, 0, 1), n+
1 = (1, 0, 1), n+

2 = (0, 1, 1),
n+

12 = (1, 1, 1), n0 = (0, 0, 0), n1 = (1, 0, 0), n2 = (0, 1, 0), n12 = (1, 1, 0),
n−0 = (0, 0,−1), n−1 = (1, 0,−1), n−2 = (0, 1,−1), n−12 = (1, 1,−1) be the
vertices of two vertically stacked cubes in R3, and let Y ⊆ R3 be the set of
these twelve vertices. We then define β0 : R3 → R ∪ {+∞} as follows:

β0(n+
0 ) = 0, β0(n+

1 ) = 0, β0(n+
2 ) = 0, β0(n+

12) = 0,

β0(n0) = 0, β0(n1) = 1, β0(n2) = 0, β0(n12) = 1,

β0(n−0 ) = 0, β0(n−1 ) = 2, β0(n−2 ) = 1, β0(n−12) = 2,

β0 = +∞ on R3 \ Y .

It is clear that β0 is submodular, and moreover, β∗∗0 is given by the supre-
mum of three affine functions; β∗∗0 = max(L1, L2, L3) in conv(Y), where

L1(y) = 0 for y = (y1, y2, y3) ∈ R3,

L2(y) = y1 + y2 − y3 − 1,

L3(y) = 2y1 − y3 − 1.

One can further check that β0 = β∗∗0 on Y, and

H12 := {y ∈ conv(Y) | L1(y) = L2(y) ≥ L3(y)} = conv({n−0 , n2, n
+
12}),

H13 := {y ∈ conv(Y) | L1(y) = L3(y) ≥ L2(y)} = conv({n−0 , n+
1 , n

+
12}),

H23 := {y ∈ conv(Y) | L2(y) = L3(y) ≥ L1(y)} = conv({n−0 , n−12, n
+
12}).

We can see that H12 has the normal direction (1, 1,−1), which is not of
the form (a,−b, 0), (a, 0,−b), or (0, a,−b) for any a, b ≥ 0. This implies that
β∗∗0 is not a submodular function. To provide details, we can find two distinct
points u, u′ in H12 such that its monotone rearrangement ū, ū′ is not in the
plane containing H12. For example, one may take u = 1

4
n−0 + 1

4
n2 + 1

2
n+

12 =

(1
2
, 3

4
, 1

4
), u′ = 1

5
n−0 + 2

5
n2+ 2

5
n+

12 = (2
5
, 4

5
, 1

5
), so that ū = (2

5
, 3

4
, 1

5
), ū′ = (1

2
, 4

5
, 1

4
).

We see that none of ū, ū′ lies on the plane containing H12, and we have



18 JOSHUA HIEW, TONGSEOK LIM, BRENDAN PASS, AND MARCELO SOUZA

y1

y2

y3

0

0
0

0

0

1
0

1

0

2
1

2

Figure 2. β0 val-
ues on the vertices.

y1

y2

y3

1

2
0

0

0

2
0

1

0

3
1

3

Figure 3. β values
on the vertices.

L1(ū) > L2(ū) and L1(ū′) < L2(ū′). Then we have

β∗∗0 (u) + β∗∗0 (u′) =

(
L1 + L2

2

)
(u+ u′)

=

(
L1 + L2

2

)
(ū+ ū′)

< L1(ū) + L2(ū′)

≤ β∗∗0 (ū) + β∗∗0 (ū′),

where the second equality is because L1+L2

2
is affine and {ū, ū′} is the mono-

tone rearrangement of {u, u′}, and the strict inequality is because L1+L2

2
(ū) <

L1(ū) and L1+L2

2
(ū′) < L2(ū′). This yields that β∗∗0 is not submodular.

The failure of Proposition 3.4 iii) for d ≥ 3 reduces the plausibility of Con-
jecture 1. Nonetheless, we continue to suspect that the conjecture may still
be true because, while Proposition 3.4 iii) is sufficient to yield the conjecture,
it may not be strictly necessary. Moreover, the heuristic is still appealing.
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However, a closer examination of the submodular function and its convex
envelop in Example 3.10 eventually allow us to construct a counterexample.

Proposition 3.11. Conjecture 1 is false if d ≥ 3. Specifically, there exist
vectorial marginals ~µ = (µ1, µ2, µ3), ~ν = (ν1, ν2, ν3) satisfying µi �c νi, i =

1, 2, 3, such that for every VMOT π to the problem (2.3) with the cost c =

c(y) = y1y2 + y2y3 + y3y1 and the marginals ~µ, ~ν, its first time marginal πX

fails to be the monotone coupling of ~µ = (µ1, µ2, µ3).

Proof. Let Y be the set of twelve points in R3 and β0 be the submodular
function as in Example 3.10. Define ψ1, ψ2, ψ3 : R→ R ∪ {+∞} by

ψ1(0) = 0, ψ1(1) = 2, ψ1 = +∞ else,

ψ2(0) = 0, ψ2(1) = 0, ψ2 = +∞ else,

ψ3(−1) = 0, ψ3(0) = 0, ψ3(1) = 1, ψ3 = +∞ else.

Set β(y) =
∑3

i=1 ψi(yi)− c(y), where c(y) = y1y2 + y2y3 + y3y1. We have

β(n+
0 ) = 1, β(n+

1 ) = 2, β(n+
2 ) = 0, β(n+

12) = 0,

β(n0) = 0, β(n1) = 2, β(n2) = 0, β(n12) = 1,

β(n−0 ) = 0, β(n−1 ) = 3, β(n−2 ) = 1, β(n−12) = 3,

β = +∞ on R3 \ Y .

Notice β ≥ β0, and β = β0 on Z := {n−0 , n2, n
+
12}. In Example 3.10, we

observed β0 = β∗∗0 on Z (in fact also on Y), hence β = β∗∗ on Z as well.
Then as in Example 3.10, we may take u = (1

2
, 3

4
, 1

4
), u′ = (2

5
, 4

5
, 1

5
) and their

monotone rearrangement ū = (2
5
, 3

4
, 1

5
), ū′ = (1

2
, 4

5
, 1

4
), such that {u, u′} ⊆

conv(Z), while none of ū, ū′ lies on the plane containing Z.
We now construct a vectorial martingale transport π. For this, take πX :=

1
2
(δu+δu′) as the first time marginal of π. Then we take the martingale kernel
πx as the unique probability measure supported on Z with its barycenter x in
conv(Z). Now define π = πx ⊗ πX (note that we only need πx for x = u, u′),
and let ~µ := (µ1, µ2, µ3) be the 1D marginals of πX , and let ~ν := (ν1, ν2, ν3)

be the 1D marginals of πY = 1
2
(πu + πu′). We now claim that π is a VMOT

solving the problem (2.3) with the cost c and the marginals ~µ, ~ν.
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We will prove the optimality of π by locating an associated dual optimizer
(φi, ψi, hi)i=1,2,3, where ψi has already been defined above. To define φi,
recall the affine functions L1, L2, L3 in Example 3.10. We have L1+L2

2
(x) =

1
2
x1 + 1

2
x2− 1

2
x3− 1

2
. We take φ1(x1) = 1

2
x1, φ2(x2) = 1

2
x2, φ3(x3) = −1

2
x3− 1

2
,

so that
∑3

i=1 φi = L1+L2

2
. Then we take h(x) = (h1(x), h2(x), h3(x)) as

(3.14) h(x) =


∇L1 = (0, 0, 0) if L1(x) > L2(x),

∇L2 = (1, 1,−1) if L1(x) < L2(x),

∇L1+L2

2
= (1

2
, 1

2
,−1

2
) if L1(x) = L2(x).

In order to prove the optimality of π and (φ, ψ, h) simultaneously, we need
to confirm the optimality conditions (2.9) and (2.10). To see (2.9), observe

3∑
i=1

φi(xi) + h(x) · (y − x) =

(
L1 + L2

2

)
(x) + h(x) · (y − x)

≤ max(L1, L2)(y)

≤ β∗∗0 (y) = max(L1, L2, L3)(y)

≤ β∗∗(y)

≤ β(y) =
3∑
i=1

ψi(yi)− c(y).

Observe further that (2.10) follows by the fact that on Z, L3 ≤ L1 = L2 = β,
such that the above inequalities become equality for x = u, u′ and y ∈ Z.
This simultaneously proves the optimality of π and (φi, ψi, hi)i for the primal
and dual problem respectively with the cost c and the marginals ~µ, ~ν.

Finally, take any γ ∈ VMT(~µ, ~ν), such that its first time marginal γX is
monotone, that is, γX = 1

2
(δū + δū′). We claim that γ cannot be optimal.

If γ were optimal, it must satisfy the optimality condition (2.10) with the
optimal dual (φ, ψ, h) constructed above. However, we have L1(ū) > L2(ū)

and L1(ū′) < L2(ū′), and this clearly implies the strict inequality(
L1 + L2

2

)
(x) + h(x) · (y − x) < max(L1, L2)(y) for x = ū, ū′ and y ∈ Y .

This shows γ cannot satisfy (2.10), hence cannot be a VMOT for (2.3). �
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Remark 3.12. We showed that the VMOT π constructed in Proposition 3.11
cannot have a monotone first marginal πX . In other words, we showed

(3.15) Eπ[c(Y )] > max
γ∈VMT(~µ,~ν)

{
Eγ[c(Y )]

∣∣∣∣ γX is monotone; γX =
δū + δū′

2

}
where c(y) = y1y2 + y2y3 + y3y1. Now let us consider the cost function
cλ(x, y) := λc(x) + c(y) = λ(x1x2 + x2x3 + x3x1) + y1y2 + y2y3 + y3y1 for
λ ≥ 0. Because the inequality (3.15) is strict, it remains strict for the cost
cλ with sufficiently small positive λ. In other words, even if the cost function
involves λc(x) which is strictly supermodular, πX is still not monotone for
every VMOT π, as long as λ is not too large. On the other hand, since

(3.16) c(u) + c(u′) < c(ū) + c(ū′),

inequality (3.15) is reversed for c = cλ with sufficiently large λ, in which case
every VMOT π now has the monotone first marginal 1

2
(δū + δū′). We thus

observe a tension between E[c(x)] and E[c(y)] for the geometry of VMOT.
An intuition can be given as follows: Because it is more important to max-

imize E[c(Y )] for small λ, a VMOT π promotes its second time marginal
πY to be supported on the monotone set Z, even if this necessitates sup-
porting its first marginal πX on a non-monotone set {u, u′}. However, as λ
grows larger, maximizing E[c(X)] becomes more important, so a VMOT π

promotes its first marginal πX to be supported on the monotone set {ū, ū′}
even if this requires πY to be supported on a non-monotone set (while each of
the kernels πū, πū′ being kept monotone supported). The tension is caused by
the martingale constraint of the problem (2.3), which distinguishes the vecto-
rial martingale optimal transport problem from the standard multi-marginal
optimal transport problem in an interesting way.

Remark 3.13. The functions ψi appearing as part of dual optimizers in
Example 3.11 appear quite singular. However, they can be made continuous
and convex by applying the martingale Legendre transform [20]. Recall (2.9),
which we rewrite in this case as

ψ1(y1) ≥ c(y)−
3∑
i=2

ψi(yi)−
3∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)
,
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Name Payoff function
European basket call option (

∑d
i=1 aiXi −K)+

European basket put option (K −
∑d

i=1 aiXi)
+

Put on the maximum among d stocks (K −max1≤i≤d{Xi})+

Call on the minimum among d stocks (min1≤i≤d{Xi} −K)+

Covariance among d stocks
∑

i,j aijXiXj + bijYiYj

Table 1. A list of supermodular derivative payouts (a, b ≥ 0).

which holds for all x, y ∈ R3. In view of this, the martingale Legendre trans-
form of ψ1 can be naturally defined by

ψ̃1(y1) := sup
x1,x2,x3,y2,y3

{
c(y)−

3∑
i=2

ψi(yi)−
3∑
i=1

(
φi(xi) + hi(x)(yi − xi)

)}
.

By definition, we have ψ1 ≥ ψ̃1. Furthermore, if c(y) = y1y2 +y2y3 +y3y1, we
see that ψ̃1 is convex (in this case, it is the supremum of finitely many affine
functions of y1). Because ψ1 is finite on Y, convexity of ψ̃1 implies that it is
finite in conv(Y). Similarly, we can replace ψ2 and ψ3 with their martingale
Legendre transforms. Then (φi, ψ̃i, hi)i continues to be a dual optimizer.

Remark 3.14. [14] showed that if each pair of marginals (µi, νi) is Gaussian
with equal mean and increasing variance Var(µi) < Var(νi) (or more gener-
ally if each pair satisfies the linear increment of marginals condition), then
the first marginal πX of any VMOT π with respect to the cost c = c(y) =∑

1≤i<j≤d yiyj is the monotone coupling of ~µ = (µ1, ..., µd). But the linear
increment is a very restrictive assumption on the marginals. In view of this,
we believe finding other sufficient conditions on the cost and marginals for
which the conjecture holds true is an intriguing question for future research.

Table 1 concludes this section by presenting several supermodular payoff
functions for exotic options, some of which can also be found in [1]. Theorem
3.5 shows that in the first period, the extremal model for the two-period cap
over the two-asset option with a sub- or super-modular payout reduces to a
single factor model.
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4. Numerical implementation via neural network

4.1. A hybrid version of the VMOT Problem. Theorem 3.5 motivates
us to consider the following variant problem:

maximize Eπ[c(X, Y )] over π ∈ VMT(χ, ~ν)(4.1)

where

VMT(χ, ~ν) := {π ∈ P(R2d) | π = Law(X, Y ), Eπ[Y |X] = X,(4.2)

Law(X) = χ, Law(Yi) = νi for all i ∈ [d]}.

This formulation assumes that we know the joint distribution ofX = (X1, ..., Xd)

which represents asset prices at the first maturity, but only the individual
distributions of Yi which represents asset prices at the second maturity. This
version of the VMOT problem appears relevant in practice, because in some
situations we may have more information about the joint distribution, or
fairly confidently model it, at a time in the near future (as being monotone,
for instance), whereas the dependence structure in the far future is much
less certain. One might therefore consider hybrid pricing problems, between
the model dependent and model independent settings, where the dependence
structure at the first time is assumed to be known but other dependency (be-
tween different asset prices at the second time, or the same asset price at the
first and second time) is not. Problem (4.1) captures exactly this scenario.

Now a consequence of Theorem 3.5 is that when d = 2 and c(x, y) =

c1(x1, x2) + c2(y1, y2) with supermodular c1, c2, the VMOT problem (2.3) is
equivalent to the above problem (4.1) in which χ ∈ P(Rd) is the monotone
coupling of the {µi}i∈[d], i.e., χ = χ~µ. We recall that χ can be written as
(F−1

1 , ...., F−1
d )#L[0,1], where each F−1

i is the inverse cumulative distribution
function of the corresponding µi. Likewise, we can also replace each νi with
G−1
i#L[0,1] where G−1

i is the inverse cumulative of νi. With this, observe that
when χ = χ~µ, which we will assume from now on, we can rewrite (4.1) as

maximize Eπ̃[c̃(U, V )] over π̃ ∈ CVMT(Φ,Ψ)(4.3)
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where U ∈ (0, 1), V = (V1, ..., Vd) ∈ (0, 1)d are random variables, and

CVMT(Φ,Ψ) :=
{
π̃ ∈ P

(
(0, 1)× (0, 1)d

) ∣∣ π̃ = Law(U, V ),(4.4)

Eπ̃[Ψ(V ) |U ] = Φ(U), Law(U) = Law(Vi) = L[0,1] for all i ∈ [d]
}

where Φ(u) := (F−1
1 (u), F−1

2 (u), ..., F−1
d (u)), v = (v1, v2, ..., vd), Ψ(v) :=

(G−1
1 (v1), G−1

2 (v2), ..., G−1
d (vd)) and c̃(u, v) := c(Φ(u),Ψ(v)).8 We note that

VMT(χ, ~ν) = (Φ,Ψ)#CVMT(Φ,Ψ); elements in VMT(χ, ~ν) are the push-
forward of elements in CVMT(Φ,Ψ) by the map (Φ,Ψ) : (0, 1) × (0, 1)d →
Rd×Rd. This problem is significantly simpler than the original (2.3), due to
the dimensional reduction in going from X ∈ Rd to U ∈ R and the reduction
from the d constraints Xi ∼ µi to the single constraint U ∼ L[0,1].

Now the dual problem to (4.3) is formulated as

(4.5) inf
(φ̃,ψ̃i,h̃i)∈Ξ̃

∫ 1

0

φ̃(u)du+
d∑
i=1

∫ 1

0

ψ̃i(vi)dvi

where Ξ̃ consists of triplets φ̃, ψ̃i : (0, 1) → R ∪ {+∞} and h̃i : (0, 1) → R
such that φ̃, ψ̃i ∈ L1(L[0,1]), h̃i is bounded for every i ∈ [d], and the following
inequality holds for every (u, v) ∈ (0, 1)× (0, 1)d:

φ̃(u) +
d∑
i=1

(
ψ̃i(vi) + h̃i(u)(G−1

i (vi)− F−1
i (u))

)
≥ c̃(u, v).(4.6)

As with the primal problem, this dual is much simpler than the original (2.8),
as we replace the d functions φi with the single function φ̃, while the functions
hi now depend on the single variable u ∈ (0, 1) rather than x ∈ Rd. We
exploit this simplified structure to develop a numerical method to compute
solutions to (4.3) (and consequently to 2.3 for d = 2 and appropriate cost c.)

4.2. Numerical method. We offer a numerical method which is based on
neural networks with penalization for calculating the optimal value, optimal
joint distribution, and the corresponding dual optimizers. The trained neural
networks can be viewed as approximate functions describing an optimal semi-
static trading strategy that super/sub-replicates the given payout function.

8We note carefully that although this problem can be formulated for any cost c and
dimension d, it is equivalent to 2.3 in general only for d = 2 and c(x, y) = c1(x1, x2) +
c2(y1, y2) with c1 and c2 supermodular.
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We note that several numerical methods have been proposed in the literature
to solve the martingale optimal transport problem. One approach involves
transforming the problem into a relaxed linear programming (LP) formu-
lation through discretization [21]. Another strategy incorporates entropic
regularization [12] which still necessitates discretization. A major potential
disadvantage of these approaches is the curse of dimensionality when dealing
with an increasing number of marginals or dimensions.

In recent years, the application of neural networks to solve optimal trans-
port problems has gained attention [19, 29, 36]. This neural network-based
approach has also been extended to the context of martingale transport
[14, 15, 24]. One notable advantage of employing neural networks is their
ability to effectively handle the curse of dimensionality through powerful ap-
proximation techniques. In particular, [14, 24] has applied neural network-
based numerical martingale transport methods in financial framework.

We apply the framework of [15], which was further developed in [14], and
examine potential performance enhancements enabled by our solution, which
takes advantage of the monotone geometry of the optimal couplings through
the formulation (4.5). More specifically, we optimize the following regularized
super-hedging functional:

(4.7) inf
ϕ∈H

∫
ϕdπ0 +

∫
bγ(c− ϕ) dθ

where π0 is any fixed element in Q := VMT(~µ, ~ν), X := Rd × Rd, and

H = {ϕ ∈ Cb(X ) |ϕ(x, y) =
d∑
i=1

(
φi(xi) + ψi(yi) + hi(x)(yi − xi)

)
}

where φi, ψi ∈ Cb(R) and hi ∈ Cb(Rd) are continuous and bounded functions.
Note that

∫
ϕdπ0 =

∑
i

∫
φidµi +

∫
ψidνi as π0 is a martingale measure. The

second term in (4.7) is designed to penalize the violation of the inequality
c ≤ ϕ via the penalty function bγ(t) := 1

γ
b(γt), where γ > 0 is a parameter

and b : R→ R+ is a differentiable non-decreasing convex function satisfying
limt→∞ b(t)/t =∞. Finally, θ ∈ P(X ) is referred to as a reference/sampling
measure, which is used to sample points at which the inequality constraint
c ≤ ϕ can be tested. We note that the problem (4.7) is dual to the following
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regularized optimal transport problem:

(4.8) sup
µ∈Q

∫
c dµ− 1

γ

∫
β∗(

dµ

dθ
) dθ

where β∗ is the convex conjugate of β; see [15] for more details.
The novelty of our strategy lies in applying the dimensional reduction

described earlier to the regularized implementation. More specifically, in
view of our reformulation (4.5), we let Q̃ := CVMT(Φ,Ψ), and H̃ be the
class of functions of the form:

(4.9) ϕ̃(u, v) = φ̃(u) +
d∑
i=1

(
ψ̃i(vi) + h̃i(u)(G−1

i (vi)− F−1
i (u))

)
where (φ̃, ψ̃i, h̃i) ∈ Ξ̃. By the martingale condition, for any π̃0 ∈ Q̃, we have∫

(
∑d

i=1 h̃i(u)(G−1
i (vi)−F−1

i (u))dπ̃0 = 0, thus
∫
ϕ̃dπ̃0 =

∫ 1

0
φ̃du+

∑
i

∫ 1

0
ψ̃idvi.

This yields that the objective/loss function in (4.7) can be written as

Loss =

∫
ϕdπ0 +

∫
bγ(c− ϕ) dθ

=

∫ 1

0

φ̃(u)du+
d∑
i=1

∫ 1

0

ψ̃idvi +

∫
bγ(c̃− ϕ̃)dθ̃

where θ̃ is the independent coupling of the (d+ 1)-copy of L[0,1] (rather than
2d-copy of L[0,1]). This results in the desired dimension reduction. With this,
the regularized dual problem (4.7) is reformulated as

(4.10) inf
ϕ̃∈H̃

∫ 1

0

φ̃(u)du+
d∑
i=1

∫ 1

0

ψ̃idvi +

∫
bγ(c̃− ϕ̃)dθ̃.

An appendix details our implementation, including penalization and neural
network parameters and the computational technology employed.

4.3. Examples. We develop several examples to demonstrate the improve-
ment enabled by our numerical method. We solve the VMOT problem for
the cost function 2.7, which is related to finding model-free bounds to the
variance of a portfolio given the marginal distributions of underlying assets.
The first example employs normal marginal distributions, while the second
employs real-world marginal distributions implied by option prices for indi-
vidual assets at two distinct future points in time.
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4.3.1. Normal marginals. We compute (4.10) (which is equivalent to (4.7))
with the cost (2.7) assuming that the marginals are normal distributions
centered at zero. It is known that our result on the monotone support of πX of
a VMOT π extends to general dimension d in specific cases such as when the
marginals are normally distributed; [14, Theorem 5.3] shows that πX is in fact
normally distributed on a straight line in Rd when the marginals are normal.
Motivated by this, and to further illustrate the positive effects of dimension
reduction, besides the case d = 2, we add examples with d = 3, 4 and 5.
We note that higher-dimensional cases give opportunity to a greater relative
simplification to the problem; as remarked earlier, using the dimension of the
sample domain as a measure of computational complexity, it is proportional
to 2d in the full dimension case and to d+ 1 in the reduced dimension.

For each value of d, we randomly generate the vector of portfolio weights
w = (w1, ..., wd). The marginal distributions are defined as

Xi ∼ N(0, σ2
i ), Yi ∼ N(0, ρ2

i ),

where σi and ρi are randomly generated in the intervals [1, 2] and [2, 3] re-
spectively. The fact σi < ρi guarantees that the marginals are in convex
order for each i. The resulting coefficients and parameters are available in
the code (see appendix for details), to allow the examples to be reproduced.
The exact optimal value of (2.3) is as follows; see an appendix for a proof.

Proposition 4.1. Let µi ∼ N(0, σ2
i ), νi ∼ N(0, ρ2

i ), 0 < σi < ρi, i = 1, ..., d.
Let λi =

√
ρ2
i − σ2

i . Let c(x, y) =
∑

i<j aijxixj + bijyiyj, aij ≥ 0, bij ≥ 0.
Then

(4.11) max
π∈VMT(~µ,~ν)

Eπ[c(X, Y )] =
∑

1≤i<j≤d

(
(aij + bij)σiσj + bijλiλj

)
.

In view of the cost (2.7), we set aij = 0 and bij = wiwj. Figure 4 shows
the convergence of the dual value (4.10) over the training epochs in the two
formulations, namely, the full-dimension version 2.3 and our reduced dimen-
sion version 4.3, for each value of d. The true optimal value (4.11) is shown
as a dotted line for reference. It is noteworthy that accuracy is significantly
sensitive to the dimension of the sample domain. As higher values of d are
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used, we see a degradation in accuracy. However, we observe that this degra-
dation is much less pronounced in the reduced dimension case. The latter
also demands less computational resources, notably memory. Table 2 com-
pares the true and the mean numeric values for all cases. For each d and
each version of the problem, we report the mean and the standard deviation
of the numerical output of the 100 last epochs.

Figure 4. Dual value convergence, full vs. reduced dimension
– normal marginals, d = 2 to 5.

Figure 5 shows the distribution of πX of a VMOT π in the quantile domain
inferred by the numerical implementation of the potential functions in both
versions for d = 2 based on [15, Theorem 2.2]. The left side shows the full
dimension case, where we observe an accumulation of the distribution of πX
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Method d Exact solution Numerical value (Std.)

Full

2 1.4729 1.4135 (0.0075)
3 0.8486 0.6536 (0.0025)
4 2.1673 1.7105 (0.0111)
5 1.7716 1.1472 (0.0057)

Reduced

2 1.4729 1.4958 (0.0115)
3 0.8486 0.7784 (0.0028)
4 2.1673 1.9891 (0.0109)
5 1.7716 1.4709 (0.0054)

Table 2. Comparison between exact and numerical values.

around the main diagonal, consistent with our theoretical result. The right
side shows the reduced dimension case, where πX is restricted to the diagonal.

Figure 5. Heat map of πX for a VMOT π on the U = (U1, U2)
space, full (left) and reduced dimension (right).

4.3.2. Empirical marginals. We move on to a real world problem where we
calculate upper and lower bounds for Eπ[c] with c in 2.7 considering a portfo-
lio composed half of Apple and half of Amazon shares. As of Dec. 16th, 2022,
we use the call and put option closing prices to compute the market-implied,
risk-neutral marginal distributions of prices on Jan. 20th and Feb. 17th, 2023.
Details about the calculation of the marginals are given in an appendix. We
consider the returns on both future dates with respect to the closing prices
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of Dec. 16th, 2022, that is,

Xi =
(
pricei(Jan 20th)− pricei(Dec 16th)

)
/pricei(Dec 16th)

Yi =
(
pricei(Feb 17th)− pricei(Dec 16th)

)
/pricei(Dec 16th)

i = 1 (Amazon), 2 (Apple).

The resulting marginal distributions are shown in Figure 6.

Figure 6. Marginal distributions of future returns implied by
the call and put option prices as of Dec. 16th, 2022 (US$).

Finally, we compare the upper and lower bounds of VMOT values to OT.
First, we can easily compute upper and lower OT value bounds using the
positive and negative monotone couplings of the marginal distributions of
Y1, Y2. Second, we apply the method described in this section to calculate the
VMOT bounds. Figure 7 shows the convergence of the dual value for both in
full and reduced dimension cases, with the OT bounds shown as grey lines.
We also plot the (independent coupling) sample mean cost Eθ[(Y1+Y2

2
)2] =

1
2
Eν1 [Y1]Eν2 [Y2] + 1

4
Eν1 [Y 2

1 ] + 1
4
Eν2 [Y 2

2 ] as a reference. The following table
summarizes the outputs. In both cases, the standard deviation of the sample
means is negligible.

We note that the reduced dimension method generates slightly wider bounds.
This is consistent with the intuition that the method that (correctly) con-
siders monotone first time marginals is closer to the extremes in comparison
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Method Upper bound (Std.) Lower bound (Std.)
Full 0.0288 (0.0009) 0.0131 (0.0003)

Reduced 0.0301 (0.0008) 0.0125 (0.0004)
MOT 0.0308 0.0114

Sample mean 0.0207

Table 3. Comparison of numeric values between VMOT and OT.

Figure 7. Dual value convergence, full vs. reduced dimension
– empirical marginals, d = 2.

with the one whose first time marginals only approximate the monotone dis-
position. Although accuracy cannot be compared without knowing the true
solution, from a risk management perspective the reduced dimension bounds
can be considered more conservative. We also observe that that the bounds
from both methods are located within the OT bounds, as expected.

5. Conclusion

In this paper we presented a geometrical result that can be viewed as the
martingale version of classical results in optimal transport, namely that a so-
lution to the VMOT problem with a sub or supermodular cost function has
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the monotone first time marginal if d = 2. We then presented examples that
negate the result for higher dimension, at least when no additional condition
is imposed on the cost function and marginals. We provided examples of
robust pricing problems that can be described as the VMOT problem with
sub/supermodular option payouts. We demonstrated that our result on the
geometry of VMOT allows for dimensional reduction in the dual formulation
of the problem, and used both synthetic and real data to calculate numerical
solutions to the portfolio variance cost function on the dual side with and
without the benefit of dimensional reduction. A comparison of the outputs
in the synthetic case demonstrated how dimensional reduction improves nu-
merical precision. Finally, our main result and the counterexample prompt
us to consider whether further structure on the cost function and marginals
can be imposed to allow the result to be extended to higher dimensions.

6. Appendix

Proof of Proposition 3.4. Let us prove part i) first. If β ≡ ∞, then β∗ ≡ −∞
and there is nothing to prove. And if β 6≡ ∞ but β∗ is not proper, i.e.,
β∗ ≡ ∞, again there is nothing to prove. So we assume β and β∗ are proper.

Suppose β is submodular. For R ≥ 0, define

(6.1) βR(x) =

β(x) if x ∈ [−R,R]d

+∞ otherwise.

Notice that βR is submodular. And for large enough R, βR is proper. Now
βR being compactly supported implies that β∗R will be Lipschitz unless β∗R ≡
+∞, but the latter is excluded since β∗ ≥ β∗R. In particular, β∗R is real-
valued everywhere. We will first show the supermodularity of β∗R. Assume
yi, ȳi ∈ R and yi ≤ ȳi for all i = 1, ..., d. Let ŷi be any number between yi, ȳi
and ŷci = {yi, ȳi} \ {ŷi} be the other number. We denote y = (y1, ..., yd),
ŷ = (ŷ1, ..., ŷd), ȳ = (ȳ1, ..., ȳd), ŷc = (ŷc1, ..., ŷ

c
d) be the elements in Rd. We

need to prove:

(6.2) β∗R(y) + β∗R(ȳ) ≥ β∗R(ŷ) + β∗R(ŷc).
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By definition of Legendre transform, given ε > 0, there exists x, x̄ ∈ Rd such
that

β∗R(ŷ) < x · ŷ − βR(x) + ε, β∗R(ŷc) < x̄ · ŷc − βR(x̄) + ε.(6.3)

Then we deduce the following, where the first inequality is by definition of
Legendre transform, and the second is by submodularity of βR:

β∗R(y) + β∗R(ȳ)

≥ (x ∧ x̄) · y − βR(x ∧ x̄) + (x ∨ x̄) · ȳ − βR(x ∨ x̄)

≥ (x ∧ x̄) · y + (x ∨ x̄) · ȳ − βR(x)− βR(x̄)

= (x ∧ x̄) · (y − ŷ) + ŷ · (x ∧ x̄− x) + x · ŷ(6.4)

+ (x ∨ x̄) · (ȳ − ŷc) + ŷc · (x ∨ x̄− x̄) + x̄ · ŷc − βR(x)− βR(x̄).

We claim that for each i, we have

min(xi, x̄i)(yi − ŷi) + ŷi(min(xi, x̄i)− xi)(6.5)

+ max(xi, x̄i)(ȳi − ŷci ) + ŷci (max(xi, x̄i)− x̄i) ≥ 0.

To see this, we investigate the following four possible cases: i) xi = min(xi, x̄i),
yi = ŷi, ii) x̄i = min(xi, x̄i), yi = ŷi, iii) xi = min(xi, x̄i), ȳi = ŷi, iv)
x̄i = min(xi, x̄i), ȳi = ŷi.

i) xi = min(xi, x̄i), yi = ŷi:

min(xi, x̄i)(yi − ŷi) + ŷi(min(xi, x̄i)− xi)

+ max(xi, x̄i)(ȳi − ŷci ) + ŷci (max(xi, x̄i))− x̄i)

= xi(yi − yi) + yi(xi − xi) + x̄i(ȳi − ȳi) + ȳi(x̄i − x̄i) = 0,

ii) x̄i = min(xi, x̄i), yi = ŷi:

min(xi, x̄i)(yi − ŷi) + ŷi(min(xi, x̄i)− xi)

+ max(xi, x̄i)(ȳi − ŷci ) + ŷci (max(xi, x̄i))− x̄i)

= x̄i(yi − yi) + yi(x̄i − xi) + xi(ȳi − ȳi) + ȳi(xi − x̄i)

= (yi − ȳi)︸ ︷︷ ︸
≤0

(x̄i − xi)︸ ︷︷ ︸
≤0

≥ 0,
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iii) xi = min(xi, x̄i), ȳi = ŷi:

min(xi, x̄i)(yi − ŷi) + ŷi(min(xi, x̄i)− xi)

+ max(xi, x̄i)(ȳi − ŷci ) + ŷci (max(xi, x̄i))− x̄i)

= xi(yi − ȳi) + ȳi(xi − xi) + x̄i(ȳi − yi) + yi(x̄i − x̄i)

= (xi − x̄i)︸ ︷︷ ︸
≤0

(yi − ȳi)︸ ︷︷ ︸
≤0

≥ 0,

iv) x̄i = min(xi, x̄i), ȳi = ŷi:

min(xi, x̄i)(yi − ŷi) + ŷi(min(xi, x̄i)− xi)

+ max(xi, x̄i)(ȳi − ŷci ) + ŷci (max(xi, x̄i))− x̄i)

= x̄i(yi − ȳi) + ȳi(x̄i − xi) + xi(ȳi − yi) + yi(xi − x̄i) = 0.

We conclude that (6.5) holds. Combining (6.5) with (6.4) and (6.3), we have

β∗R(y) + β∗R(ȳ)

≥ (x ∧ x̄) · (y − ŷ) + ŷ · (x ∧ x̄− x) + x · ŷ

+ (x ∨ x̄) · (ȳ − ŷc) + ŷc · (x ∨ x̄− x̄) + x̄ · ŷc − βR(x)− βR(x̄)

≥ x · ŷ − βR(x) + x̄ · ŷc − βR(x̄)

≥ β∗R(ŷ) + β∗R(ŷc)− 2ε.

Taking ε→ 0 yields the desired supermodularity of β∗R. Now as R→∞, we
have βR ↘ β on Rd thus β∗R ↗ β∗, hence obtaining supermodularity of β∗.

Now we prove part ii). For d = 2, if β(x1, x2) is supermodular, then
β̃(x1, x2) := β(x1,−x2) is submodular. Hence β̃∗ is supermodular by part i),
yielding (y1, y2) 7→ β̃∗(y1,−y2) is submodular. We then compute

β̃∗(y1,−y2) = sup
x1,x2

x1y1 + x2(−y2)− β̃(x1, x2)

= sup
x1,x2

x1y1 + (−x2)(−y2)− β̃(x1,−x2)

= sup
x1,x2

x1y1 + x2y2 − β(x1, x2)

= β∗(y1, y2)

which shows that β∗(y1, y2) = β̃∗(y1,−y2) and the result follows. �
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Proof of Proposition 4.1. [14, Theorem 5.3] showed by duality argument that
under the assumption of Proposition 4.1, there is a VMOT π = Law(X, Y )

under which the martingale (X, Y ) is given by

X = (X1, ..., Xd) with Xi = σiU where U ∼ N(0, 1),(6.6)

and the conditional law of Y = (Y1, ..., Yd) given X is as follows:

Given X, Yi ∼ N(Xi, λ
2
i ), and(6.7)

Yj −Xj =
λj
λi

(Yi −Xi), 1 ≤ i < j ≤ d.

Notice the marginal condition is satisfied with this martingale. (6.6) yields

(6.8) Eπ[XiXj] = σiσjEπ[U2] = σiσj, i < j.

On the other hand, for each i < j, (6.7) yields

Eπ[YiYj|X] = Eπ[Yi
(λj
λi

(Yi −Xi) +Xj

)
|X]

=
λj
λi
Eπ[Y 2

i |X]− λj
λi
XiEπ[Yi|X] +XjEπ[Yi|X]

=
λj
λi

(λ2
i +X2

i )− λj
λi
X2
i +XiXj

= λiλj +XiXj.

Hence, Eπ[YiYj] = E[Eπ[YiYj|X]] = λiλj + σiσj, completing the proof. �

Numerical methods – computational details.
In our implementation, each of θ, ψi, hi is replaced by some approximation

θm, ψmi , hmi implemented as a neural network with an internal size parame-
terized by m. We chose to use a fixed number of 2 ReLU-network layers with
64 Neurons each. Variations of this arrangement did not bring significant
change, and we did not perform a hyper parameter search. The integrals are
approximated by the mean over samples drawn from the reference measure
θ. As a standard procedure, we run the neural network optimization, or
“training,” for a certain number of epochs until an acceptable level of con-
vergence is reached. We used 30 random samples of 1 million points each for
each example and version, and ran 10 training epochs with each sample, for
a total of 300 training epochs, which proved sufficient for all examples.



36 JOSHUA HIEW, TONGSEOK LIM, BRENDAN PASS, AND MARCELO SOUZA

We employ Python and the Pytorch neural network package with the stan-
dard Adam gradient descent optimizer.9 The convergence to the true optimal
value is guaranteed by Proposition 2.4 and Remark 3.5 in [15].

A typical (and our) choice of θ is θ := µ1 ⊗ · · · ⊗ µd ⊗ ν1 ⊗ · · · ⊗ νd, i.e.,
the independent coupling of the marginals. Our choice of b is b(t) = 1

2
(t+)2,

so that b(t) = 1
2γ

((γt)+)2. In our tests, the choice of γ affected the conver-
gence pattern significantly; we finally fixed γ := 1000 in the examples with
normal marginals and γ := 100000 in the examples with empirical marginals.

Construction of the empirical marginal distributions. It is well known that if
we had an infinite number of call option prices C(K, t) or put option prices
P (K, t) with t time to maturity, across all possible strike prices K, we could
determine the risk-neutral density function of the underlying asset. [6] noted
that the risk-neutral density f(K, t) for period t is essentially the second
derivative of the curve of call or put prices with respect to strike price:

f(K, t) =
∂2C(X, t)

∂X2

∣∣∣
X=K

= lim
h→0

[C(X + h, t)− C(X, t)]− [C(X, t)− C(X − h, t)]
h2

.

This is also valid if we replace the curve of call price C by that of put price P .
Due to the no arbitrage condition, both call and put price curves are convex
as a function of K, meaning the second derivative exists almost everywhere.

In practice, however, we only see call prices at a limited range of strike
prices, restricting our ability to calculate the risk-neutral density directly.
Instead, we use second-order finite differences at observable strike prices to
approximate it and linearly interpolate between different strike prices. Be-
cause out-of-the-money options have lesser activity and may be mispriced,
we calculate the density function using put options with strike prices lower
than the spot price and call options with strike prices higher than the spot
price. In addition, near the extremes of the call and put price curves where
prices approach zero, we exclude some option prices that clearly violate no
arbitrage due to illiquidity. We may also normalize the resulting function to
ensure that it is a probability density, i.e., its integral equals one, if needed.
Through these steps, we obtain an empirical risk-neutral density function.

9Source code available at https://github.com/souza-m/vmot.
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