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Abstract. The theory of Optimal Transport (OT) and Martin-
gale Optimal Transport (MOT) were inspired by problems in eco-
nomics and finance and have flourished over the past decades, mak-
ing significant advances in theory and practice. MOT considers the
problem of pricing and hedging of a financial instrument, referred
to as an option, assuming its payoff depends on a single asset price.
In this paper we introduce Vectorial Martingale Optimal Transport
(VMOT) problem, which considers the more general and realis-
tic situation in which the option payoff depends on multiple asset
prices. We address this problem of pricing and hedging given mar-
ket information – described by vectorial marginal distributions of
underlying asset prices – which is an intimately relevant setup in
the robust financial framework.

We establish that the VMOT problem, as an infinite-dimensional
linear programming, admits an optimizer for its dual program.
Such existence result of dual optimizers is significant for several
reasons: the dual optimizers describe how a person who is liable
for an option payoff can formulate optimal hedging portfolios, and
more importantly, they can provide crucial information on the ge-
ometry of primal optimizers, i.e. the VMOTs. As an illustration,
we show that multiple martingales given marginals must exhibit an
extremal conditional correlation structure whenever they jointly
optimize the expectation of distance-type cost functions.
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1. Introduction

The theory of Optimal Transport (OT) and its probabilistic version
Martingale Optimal Transport (MOT) were inspired by problems in eco-
nomics and finance and have flourished over the past decades, making
significant advances in theory and practice.

In this paper we introduce the vectorial Martingale Optimal Trans-
port (VMOT) problem, which is an intimately relevant setup in view of
the robust financial framework dealing with many asset prices.

To further elaborate this point, let us consider a stochastic process
(Xt,i)t≥0 of e.g. company i’s stock price, where i ∈ [d] := {1, 2, ..., d}.
Under the risk neutral probability we may assume Xt := {(Xt,i)}i∈[d] ∈
Rd is a vector-valued martingale. Now in the robust financial frame-
work we shall not assume that the joint probability law of (Xt)t≥0 is
known, since we are unable to determine this joint law from the market
information. However, by a standard argument by Breeden and Litzen-
berger [9], we shall assume that the distribution of each price at each
fixed maturity t0 > 0, i.e. Law(Xt0,i), can be observed from the market.

From now on let us focus on two fixed maturity times 0 < t1 < t2, and
denote Xi := Xt1,i, Yi := Xt2,i, X = (X1, ..., Xd), Y = (Y1, ..., Yd), and
assume that (X, Y ) is a (one-step, Rd-valued) martingale: E[Y |X] = X.
According to the above consideration we do not assume Law(X, Y ) ∈
P(R2d) is known, but only the 2d-number of marginal distributions
µi := Law(Xi), νi := Law(Yi) are known and fixed. This naturally leads
us to consider the following VMOT problem: Let µi, νi ∈ P1(R), where

Pj(Rk) := {µ | µ is a probability measure on Rk with

∫
|x|jdµ(x) <∞}.

Let us write ~µ = (µ1, ..., µd), ~ν = (ν1, ..., νd). We consider the following
space of Vectorial Martingale Transportations from ~µ to ~ν

VMT(~µ, ~ν) := {π ∈ P(R2d) | π = Law(X, Y ), E[Y |X] = X,(1.1)

Xi ∼ µi, Yi ∼ νi ∀ i ∈ [d]}.

Let c : R2d → R be a (cost) function. We define the VMOT problem as

max /minimize Eπ[c(X, Y )] over π ∈ VMT(~µ, ~ν).(1.2)

The function c has a natural interpretation in finance as an exotic op-
tion whose payoff is determined by the d-number of asset prices (X, Y )
at the terminal maturity. Eπ[c(X, Y )] shall be considered as a fair price
of the option c in the risk-neutral world governed by the law of asset
prices π, but since π would not be observed from the financial market,
we need to consider all possible laws VMT(~µ, ~ν) given the marginal
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information ~µ, ~ν. Under this information, the max / min value in (1.2)
can be interpreted as the upper / lower price bound for c respectively.

Note that without the martingale constraint E[Y |X] = X, (1.2)
would be the usual multi-marginal optimal transport problem. But
(1.2) still belongs to the class of infinite-dimensional linear program-
ming, since the martingale constraint is linear. Now unlike the optimal
transport case, the problem (1.2) will be feasible (i.e. VMT(~µ, ~ν) 6= ∅)
if only if every pair of marginals µi, νi is in convex order, defined by

µi ≤c νi iff µi, νi ∈ P1 and

∫
fdµi ≤

∫
fdνi for every convex f,

as shown by Strassen [54]. Thus we will always assume µi ≤c νi for all
i ∈ [d] in VMOT problem. And, because we will need to calculate means
and potential functions of the measures, we will make the following
assumption throughout the paper (unless otherwise specified):

Assumption. All measures appearing in this paper are assumed to
have finite first moments.

Our first main result investigates the extremal correlation behav-
ior of the terminal prices Y conditional on X, when the martingales
(X, Y ) jointly max/minimize a distance-type cost function given vec-
torial marginals. More precisely, we establish the following theorem.

Theorem 1.1. Assume all µi are absolutely continuous with respect
to Lebesgue measure, denoted as µi � L. If π solves the maximization
problem in (1.2) with the Euclidean distance cost c(x, y) = |x−y|, then
given X, the conditional distribution of Y lies in the set of extreme
points of a convex set CX ⊆ Rd depending on X, π–almost surely.

Here we say that a random variable Y lies in A if Y ∈ A a.s., and a
distribution ξ lies in A if ξ has its full mass in A. We shall also prove an
analogous result for the minimization problem in (1.2), and we also note
that Theorem 1.1 still holds for more general class of strictly convex
costs c(x, y) = ||x− y||. See Theorem 2.1 for more details. We further
note that the statement of extremal correlation was firstly given and
studied by [32] in the context of MOT and two n-dimensional marginals.

Recall that the VMOT problem belongs to the class of infinite-dimensional
linear programming, which implies that the problem has its dual pro-
gramming problem. For the (primal) minimization problem in (1.2), its
dual problem is given by

(1.3) sup
(ϕi,ψi,hi)∈Ψ

d∑
i=1

( ∫
ϕidµi +

∫
ψidνi

)
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where Ψ consists of triplets ϕi, ψi : R → R ∪ {−∞} and hi : Rd → R
such that ϕi ∈ L1(µi), ψi ∈ L1(νi), hi is bounded for every i ∈ [d], and

d∑
i=1

(
ϕi(xi) + ψi(yi) + hi(x)(yi − xi)

)
≤ c(x, y) ∀(x, y) ∈ R2d(1.4)

where x = (x1, ., , , xd), y = (y1, ..., yd). Analogous dual problem for the
maximization in (1.2) is easily obtained by changing sign of c to −c.

The dual problem also has an important interpretation in finance.
Suppose a financial firm is liable for an option c it has sold so that the
firm has to pay c(X, Y ) at the terminal maturity t2. To hedge its risk,
the company may consider buying European options ϕi, ψj where each
payoff relies only on a single asset at a fixed time. In addition, the firm
may consider holding hi number of shares of the ith asset held between
the t1 and t2 maturity, such that its payoff at t2 is hi(X) · (Yi − Xi).
Notice hi is a function of the past prices of all assets {Xi}di=1. Thus the
left hand side of (1.4) yields the overall payoff of the hedging portfolio
(ϕi, ψi, hi)

d
i=1, and the inequality (1.4) imposes that the position must

subhedge the liability for all scenarios of (X, Y ). Now notice the dual
of the maximization in (1.2) becomes an optimal superhedging problem.

Now the celebrated duality result asserts, under a mild assumption
on c, that the primal and dual optimal values coincide (see e.g. [27,58])

P (c) : = inf
π∈VMT(µ,ν)

Eπ[c(X, Y )](1.5)

= sup
(ϕi,ψi,hi)∈Ψ

d∑
i=1

( ∫
ϕidµi +

∫
ψidνi

)
=: D(c).

Still a natural question is whether a dual optimizer exists, that is,
a “tightly” sub/superhedging portfolio can be constructed. In the past
decades, researchers working in OT already realized that the existence
of an optimizer to the dual problem – often called dual attainment – is
the essential key for the investigation of the optimal transport plans.
But due to the nature of infinite dimensionality, establishing the dual
attainment turns out to be quite subtle, as can be seen e.g. by the work
of Brenier [10]. Thus it is no surprise that our second main result on the
dual attainment is crucial for establishing Theorem 1.1. For a measure
ξ on R define its potential function uξ(x) :=

∫
|x − y|dξ(y). We say

µ ≤c ν is irreducible if I := {uµ < uν} is connected and µ(I) = µ(R).
For more information on the notion of irreducibility, see Section 3 or [7].

Theorem 1.2. Let (µi, νi)i∈[d] be irreducible pairs of marginals on
R. Let c(x1, ..., xd, y1, ..., yd) be a lower-semicontinuous cost such that
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|c(x, y)| ≤
∑d

i=1

(
vi(xi) + wi(yi)

)
for some continuous vi ∈ L1(µi),

wi ∈ L1(νi). Then there exists a pointwise dual maximizer (PDM), a
triplet of functions (ϕi, ψi, hi)

d
i=1 that satisfies (1.4) tightly in the fol-

lowing pointwise manner (but does not necessarily belong to Ψ):

d∑
i=1

(
ϕi(xi) + ψi(yi) + hi(x)(yi − xi)

)
= c(x, y) π − a.s.(1.6)

for every VMOT π which solves the minimization problem in (1.2).

We analogously define a pointwise (or pathwise) dual minimizer (PDm)
for which the inequality in (1.4) should be reversed and π in (1.6) now
solves the maximization problem in (1.2). This simply corresponds to
the change of c to −c in the theorem. We shall sometimes call Theorem
1.2 as pointwise/pathwise dual attainment (PDA) for VMOT problems.

The term pointwise indicates the fact that (1.4), (1.6) hold in a point-
wise manner (i.e., the equality (1.6) is satisfied for π - almost every
“point” or “path” (x, y)), and that we do not impose the integrability
condition, namely ϕi ∈ L1(µi), ψi ∈ L1(νi), or hi is bounded, on the
PDM. Thus, a PDM needs not be in Ψ, and moreover, ϕi, ψi may as-
sume the value −∞. However, it is indeed true that ϕi ∈ R µi-a.s. and
ψi ∈ R νi-a.s., implied by the equation (1.6). See also Remark 3.2.

A couple of pioneering works on the dual attainment for MOT prob-
lems on the line (d = 1) was established by Beiglböck-Juillet [5] and
Beiglböck-Nutz-Touzi [7], where they already observed that the PDA
could fail if one insists the integrability condition on PDM/PDm, or
if one does not impose the irreducibility on the marginals. Beiglböck-
Lim-Ob lój [6] established PDA without the irreducibility assumption
but imposing further regularity condition on c. Theorem 1.2 is a con-
tinuation of these efforts for the case d ≥ 2, i.e., for the VMOT setup.

Further background. Let us briefly introduce the optimal transport
(OT) problem, which is the prototype of MOT and VMOT problems.
To begin with, let us introduce the notion of push-forward of measures.
Given a measurable map F : X → Y and a measure µ on X , the
push-forward of µ by F , denoted by F#µ, is a measure on Y satisfying

F#µ(A) = µ(F−1(A))

for every measurable A ⊆ Y .
Let px, py : Rd×Rd → Rd be the projection maps given by px(x, y) =

x, py(x, y) = y. For a given cost function c : Rd × Rd → R and two



6 TONGSEOK LIM

Borel probability measures µ, ν on Rd, the OT problem is given by

(1.7) Minimize cost[π] =

∫
Rd×Rd

c(x, y) dπ(x, y) over π ∈ Π(µ, ν)

where Π(µ, ν) ⊆ P(R2d) is the set of transport plans, or couplings, if all
π ∈ Π(µ, ν) have given marginals µ and ν, meaning px#π = µ, py#π = ν.

Kantorovich [40,41] proposed the general formulation of the problem
(1.7) in the 1940s after Gaspard Monge’s first formulation in the 1780s
[46]. Since then, many important contributions have been made on the
subject, as can be seen by part through the works [1,2,8,10,11,19,20,
28, 31, 44, 45, 53, 55–57]. In particular, one of the central questions is
when the OT plans are given by transport maps – often called Monge
problem, especially when c(x, y) = |x − y| – that is, when there exists
a map T : Rd → Rd such that a minimizer π in (1.7) is given by
π = (Id, T )#µ, where Id(x) = x is the identity map on Rd.

To answer, we need to understand the geometry of the OT plans.
Such a characteristic structure of OT plan is encoded in its support,
which exhibits the so called c-cyclical monotonicity. The monotonicity
is already useful, but when combined with the celebrated theorem of
Rockafellar [51], we obtain the dual attainment, a cornerstone of OT:
there exist two functions ϕ, ψ : Rd → R, called Kantorovich potentials,
such that for every minimizer π of the problem (1.7), we have

ϕ(x) + ψ(y) ≤ c(x, y) ∀x ∈ Rd, ∀y ∈ Rd,(1.8)

ϕ(x) + ψ(y) = c(x, y) π − a.e. (x, y).(1.9)

It turns out the dual attainment is essential for understanding OT [31].
Let us view the OT maps in a slightly different angle, and for this we

recall the notion of disintegration of measures. For a general measure
π ∈ P(R2d), a disintegration of π via its first marginal π1 := px#π is

(1.10) π = πx ⊗ π1

which means for any Borel sets A,B ⊆ Rd, π(A×B) =
∫
A
πx(B)dπ1(x).

The family of probabilities πx := {πx}x is called a disintegration (or
kernel) of π with respect to π1. It is known this family uniquely exists
π1- a.e. x. Perhaps probabilistic language helps to understand better.
Suppose π is the joint distribution of the Rd-valued random variables
X, Y , denoted as π = Law(X, Y ). Then π1 = Law(X), and πx is the
conditional law of Y given X = x, that is πx(B) = P(Y ∈ B |X = x).

Now “π ∈ Π(µ, ν) is given by a transport map T .” is equivalent to

(1.11) π = (Id, T )#µ ⇐⇒ π = πx ⊗ µ with πx = δT (x)
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where δy is the Dirac mass at y, the probability measure concentrated
at y. In this case one could say the solution π exhibits an extremal
geometry in the sense that a disintegration πx, which describe the so-
lution, are as extreme as Dirac masses, the most condensed measures.
Finally, we would like to also mention some important applications of
OT in economics [18,22,29,50], and in statistical theory [12,16,17,52].

Recently a variant of OT, referred to as martingale optimal transport
(MOT), was introduced. In MOT problem, we consider the following:

(1.12) Minimize Cost[π] =

∫
Rd×Rd

c(x, y) dπ(x, y) over π ∈ MT(µ, ν)

where MT(µ, ν) (Martingale Transport plans) is a subset of Π(µ, ν)
such that each π = πx ⊗ µ ∈ MT(µ, ν) satisfies δx ≤c πx, that is πx
has its barycenter at x. Notice the kernel (πx)x cannot be Dirac masses
unless πx = δx. Nonetheless, Theorem 1.1 shows the kernel of each MOT
for l1 norm-type costs still exhibits an interesting extremal distribution.

Probabilistic description of the MOT problem is as follows: consider

Minimize EP [c(X, Y )](1.13)

over all couples (X, Y ) of Rd-valued random variables on some prob-
ability space (Ω,F ,P) such that Law(X) = µ, Law(Y ) = ν and
E[Y |X] = X, i.e. (X, Y ) is a one-step martingale. Strassen [54] showed
MT(µ, ν) is nonempty if and only if µ, ν are in convex order µ ≤c ν.

While some pioneering works to investigate the MOT problem have
been made including [4,26,30,38,39], there is a related problem, called
the Skorokhod embedding problem (SEP) which has a long history in
probability theory. Since Hobson [36,37] recognised the important con-
nection between model independent finance and asset pricing theory
and SEP (see Ob lój [47] for a nice overview of the SEP and Beiglböck-
Cox-Huesmann [3] for a link with OT theory), much related research
has been done in this context including [13,21,34,35,49] for instance.

In the early stages of development of MOT theory, most of the re-
search focused on single asset cases. More recently there have been
efforts to generalize the theory into higher dimension d ≥ 2, especially
around the theory of duality and its attainment [24,25,27,32,33,43,48].
Nonetheless, to the best of the author’s knowledge a complete un-
derstanding of the possibility for the dual attainment has not been
achieved: the added “trading strategy” term h(x) · (y − x) in the dual
formulation seems to drastically change the picture from the OT case,
and the potential non-existence of dual optimizers makes the study of
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solutions to MOT much more complex in the multi-dimensional setting.

While the MOT formulation (1.12) is a natural analogue of OT, not
only it has difficulty in establishing PDA, but also its assumption on
the marginal information is rather unrealistic from the financial point
of view. This is because MOT assumes the joint distribution of the as-
sets {Xi}i and {Yi}i are known – the µ, ν. However, in practice such
information is hardly observable from the market, and this is part of
the motivation for us to introduce the current VMOT formulation. Let
us recall that the main difference between MOT and VMOT lies in the
marginal constraint, since in VMOT only the individual laws of {Xi}i
and {Yi}i – the ~µ, ~ν – are assumed to be known. Thus, there are now at
least three unknown couplings in the VMOT problem whose structures
are of major interest: the VMOT plan π = Law(X, Y ), and moreover
the induced couplings π1 := px#π = Law(X) and π2 := py#π = Law(Y ).

This paper is organized as follows. In section 2 we state and prove
a more detailed version of Theorem 1.1 by applying PDA. In section
3 we prove the PDA, Theorem 1.2, using a compactness result whose
proof is given in an appendix. Section 4 presents further results on the
structure of VMOT and optimality of induced couplings.

2. Extremal correlation of martingales – Theorem 1.1

In this section, we state and prove Theorem 2.1 which is a more
precise and extended version of Theorem 1.1. We will prove it here by
assuming Theorem 1.2. Let us introduce some terminology. A norm
|| · || on Rd is called strictly convex if its unit ball B = {x : ||x|| ≤ 1}
is strictly convex, i.e. every boundary point of B is an extreme point
of B. Euclidean norm | · | clearly belongs to this class. For a set A,
conv(A) is the convex hull of A, and for a convex set A, Ext(A) is the
set of extreme points of A. For a measure ξ, the support of ξ, denoted
by supp ξ, is the smallest closed set on which ξ has its full mass. For
measures µ, ν, there exists a unique largest measure µ ∧ ν (called the
common mass of µ, ν) which is dominated by µ and ν, i.e. µ ∧ ν ≤ µ,
µ ∧ ν ≤ ν, where µ ≤ ν means µ(A) ≤ ν(A) for every measurable A.
When µ, ν are given by densities f, g respectively, µ∧ ν is given by the
density f ∧ g := min(f, g). µ � Ld means µ is absolutely continuous
w.r.t. the Lebesgue measure on Rd, that is µ has a density function.

Theorem 2.1. Let (µi, νi)i∈[d] be pairs of probability measures on R in
convex order, and µi � L1 for all i. Let c(x, y) = ±||x− y|| where the
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norm || · || is strictly convex and x 7→ ||x|| is differentiable on Rd \ {0}.
Let π = πx⊗π1 be any minimizer for (1.2) where π1 = px#π, π2 = py#π.

(1) If c(x, y) = −||x− y||, then the support of πx coincides with the
extreme points of the convex hull of itself:

supp πx = Ext
(
conv(supp πx)

)
, π1 − a.e. x.

(2) If c(x, y) = ||x − y||, we have D#(π1 ∧ π2) ≤ π where D(x) =
(x, x), meaning that the common marginal π1 ∧ π2 stays put
under π, or the minimizer π does not move the mass of π1∧π2.
Let π̃ := π−D#(π1∧π2) and disintegrate as π̃ = π̃x⊗ π̃1. Then

supp π̃x = Ext
(
conv(supp π̃x)

)
, π̃1 − a.e. x.

Observe π̃ is a martingale transport from π̃1 := px#π̃ = π1 − π1 ∧ π2

to π̃2 := py#π̃ = π2 − π1 ∧ π2, and π̃1 ∧ π̃2 = 0. Since D#(π1 ∧ π2) is an
identity transport, we conclude that by minimizing E||x− y||, we get

supp πx = Ext
(
conv(supp πx)

)
or suppπx = Ext

(
conv(supp πx)

)
∪{x}

and moreover the latter will be the case for π1 ∧ π2 – a.e. x.
We remark that [38], [39] studied the structure of MOT w.r.t. c(x, y) =
±|x− y| in the single-martingale setup, and later [5] rediscovered part
of their results from a different approach. Theorem 2.1 may be viewed
as a generalization of e.g. [5, Theorem 7.3, Theorem 7.4] to the mul-
tiple martingales setup, showing that the martingales given marginals
are correlated in an extremal way to achieve the optimum.

Proof. Step 1. Let us tentatively assume that (µi, νi) are irreducible
for every i. This assumption will be removed in the last step. Then
by Theorem 1.2 we have a PDM (fi,−gi, hi)i∈[d], that is, by denoting

f⊕(x) =
∑d

i=1 fi(xi), g
⊕(y) =

∑d
i=1 gi(yi) and h = (h1, ..., hd), we have

f⊕(x) + h(x) · (y − x) ≤ c(x, y) + g⊕(y) ∀(x, y) ∈ R2d, and(2.1)

f⊕(x) + h(x) · (y − x) = c(x, y) + g⊕(y) π − a.s..(2.2)

Recall that in Theorem 1.2, (2.2) is attained as real-valued, yielding
fi is finite µi-a.s. and gi finite νi-a.s.. In this step we shall obtain a
differential identity (2.13).

To this end, recall the martingale Legendre transform of g⊕(y) is a
pair of functions (α, γ̃) defined as in [32, Definition 3.1]:

α(x) := sup{a ∈ R | there exists b ∈ Rd such that(2.3)

a+ b · (y − x) ≤ c(x, y) + g⊕(y) for all y},
γ̃(x) := {b ∈ Rd |α(x) + b · (y − x) ≤ c(x, y) + g⊕(y) for all y}.(2.4)
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In general γ̃ is a convex set-valued (possibly empty, but see (2.5) below)
function and we may choose a Rd-valued function γ ∈ γ̃. Observe that
if we define Hx(y) to be the convex envelope of y 7→ c(x, y) + g⊕(y),
then y 7→ α(x) + γ(x) · (y−x) is an affine tangent function to Hx(y) at
x. Now recall that µi ≤c νi is called irreducible if Ii := {uµi < uνi} is
connected open and µi(Ii) = µi(R). Set I := ⊗iIi ⊆ Rd to be an open
rectangle. Now (2.3) gives f⊕(x) ≤ α(x), thus

f⊕(x) + γ(x) · (y − x)− c(x, y) ≤ α(x) + γ(x) · (y − x)− c(x, y)

≤ g⊕(y)

and equality holds throughout (as real-valued) π - a.s.. The fact gi finite
νi-a.s. then yields I ⊆ conv{g⊕ is finite}. With this and the fact that
c is Lipschitz, [32, Theorem 3.2] yields the following local regularity:

α is Lipschitz and γ is bounded on every compact subset of I.(2.5)

We wish fi to attain Lipschitz property, so we will take the Legendre
transform of fi with respect to α to obtain such property. But as α is
in general only locally Lipschitz, let us take the transform locally as
follows: write Ii =]ai, bi[ and for n ∈ N, let Ini =]ai +

1
n
, bi− 1

n
[∩]−n, n[

and In = ⊗iIni . Now define ϕi successively for i = 1, 2, ..., d by

ϕi(xi) := inf
xj∈Inj ,j 6=i

(
α(x)−

∑
j<i

ϕj(xj)−
∑
j>i

fj(xj)
)
.(2.6)

Since α is (globally) Lipschitz in In (because α is locally Lipschitz in
I), (2.6) implies that ϕi is Lipschitz in Ini , and

fi ≤ ϕi on Ini and
∑
i

ϕi(xi) ≤ α(x) on In.

Let πn := π
∣∣
In×Rd be the restriction of π on In ×Rd, let π1

n = px#πn,

and let (µni )i∈[d] be the one-dimensional marginals of π1
n. As µni ≤ µi

yields µni � L, each ϕi is differentiable µni -a.e.. Hence

ϕ⊕(x) :=
∑
i

ϕi(xi) is differentiable π1
n − a.e. x.(2.7)

Now because f⊕ ≤ ϕ⊕ ≤ α, we have

ϕ⊕(x) + γ(x) · (y − x)− c(x, y) ≤ g⊕(y) ∀(x, y) ∈ In × Rd,(2.8)

ϕ⊕(x) + γ(x) · (y − x)− c(x, y) = g⊕(y) πn − a.e.(2.9)

We may rewrite (2.9) as

For π1
n − a.e. x, ϕ⊕(x) + γ(x) · (y − x)− c(x, y) = g⊕(y) πx − a.e. y.

(2.10)
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Fix x0 at which (2.10) holds and ϕ⊕ is differentiable. Let V0 be the
subspace of Rd spanned by the set suppπx0−x0 (translation of supp πx0
by −x0). If dim V0 = 0 then it simply means suppπx0 = {x0} and there
is nothing to prove. Thus let us assume that dim V0 ≥ 1. Now [32,
Lemma 4.1] showed that, if (2.8), (2.10) hold, then

directional derivative of projV0γ exists at x0 in every direction u ∈ V0,
(2.11)

where projV0γ is the orthogonal projection of the Rd-valued function γ
on V0. While a proof can be found in [32], here let us give some intuition:
in (2.8) the function y 7→ ϕ⊕(x0)+γ(x0) · (y−x0)− c(x0, y) is bounded
above by g⊕(y), but (2.10) tells us that the function is in fact tightly
bounded by g⊕(y) for πx0 - a.e. y. The facts πx0 has barycenter at x0

and the functions ϕ⊕(x) and x 7→ c(x, y) are differentiable at x = x0

implies that projV0γ has not much room to vary wildly near x0 in V0,
yielding it is forced to be differentiable at x0 in V0.

Next, note that (2.8), (2.10) imply for πx0 − a.e. y
ϕ⊕(x0) + γ(x0) · (y − x0)− c(x0, y)(2.12)

≥ ϕ⊕(x) + γ(x) · (y − x)− c(x, y) ∀x ∈ In,

and notice by continuity of c, (2.12) holds for every y ∈ supp πx0 .
Then from (2.7), (2.11), we deduce that for any nonzero vector u in
V0, by taking u-directional derivative in x at x0, it holds that for any
y ∈ supp πx0 \ {x0},

∇uϕ
⊕(x0) +∇uγ(x0) · (y − x0)− γ(x0) · u−∇uc(x0, y) = 0.(2.13)

From this identity [32] proved the theorem when the cost is given by the
Euclidean norm. We will follow a similar line but as we deal with more
general strictly convex norms, we shall need a more involved argument.

Step 2. We shall prove the “non-staying” property of the common
mass π1 ∧π2 in the case c(x, y) = −||x− y|| (π1 6= π2 by irreducibility)
and the “staying” property in the case c(x, y) = +||x − y|| for the
minimization problem in (1.2).

For c(x, y) = −||x−y||, (2.12) immediately implies x0 /∈ supp πx0 for
every x0 at which ϕ⊕ is differentiable, thus π1-a.s., (which we call the
non-staying property of the minimizer π) by the following reason: if
x0 ∈ supp πx0 , then the function x 7→ ϕ⊕(x)+γ(x) · (x0−x)+ ||x−x0||
must attain its maximum at x = x0 by (2.12). But notice that due to
the increase of x 7→ ||x − x0|| the function will strictly increase as x
moves away from x0 along any direction u ∈ V0 satisfying ∇u(ϕ

⊕(x) +
γ(x) · (x0 − x)) ≥ 0 at x = x0, a contradiction. Notice we have shown
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that if suppπx0 6= {x0} and a PDM exists, then for c(x, y) = −||x−y||,
x0 /∈ suppπx0 whenever ∇ϕ⊕ exists at x0.

Next, the staying property for the case c(x, y) = ||x−y|| refers to the
statement D#(π1∧π2) ≤ π as stated in the theorem. This property was
proved in e.g. [5, Theorem 7.4] for one dimensional case and then gen-
eralized in [43, Theorem 2.3] for general dimension in the MOT setup,
but note that a solution π of MMOT is also a solution of MOT between
its own marginals π1 and π2. Both [5], [43] assumed c(x, y) = |x − y|,
but we note the same proof works for any strictly convex norm cost.
From the staying property, the study of the geometry of π is now re-
duced to the study of π̃ := π −D#(π1 ∧ π2). Note that π̃ has no mass
on the diagonal {(x, x) |x ∈ Rd} and π̃ must solve the VMOT problem
with respect to its own one-dimensional marginals.

Step 3. By Step 2 we can assume πx0 has no mass at x0. Under
this assumption we will show supp πx0 is contained in the set of ex-
treme points of conv(suppπx0). To this end, first we will show that
suppπx0 is contained in the boundary of conv(supp πx0), where the
boundary refers to the topology of V0 and not of Rd. Suppose on the
contrary suppπx0 * bd

(
conv(supp πx0)

)
. Then we can find a point y ∈

int
(

conv(supp πx0)
)
∩ (suppπx0 \ {x0}) and a subset {y0, y1, ..., ym} ⊆

supp πx0 \ {x0, y} such that y is a convex combination of these, i.e.,

There exists pi > 0 for all i,
m∑
i=0

pi = 1 such that y =
m∑
i=0

piyi.(2.14)

Then due to the linearity of y 7→ ∇uγ(x)·(y−x), from (2.13) we deduce

∇uc(x0, y) =
m∑
i=0

pi∇uc(x0, yi) ∀u ∈ V0.(2.15)

Using this, we will show that

the points {y, y0, y1, ..., ym} lie on a ray emanating from x0.(2.16)

To see this, take u = y − x0, let c(x, y) = ||x− y||, and let x0y be the
infinite line containing x0, y. Thanks to the strict convexity of || · ||, we
will firstly show that ∇uc(x0, y) < ∇uc(x0, z) for any z /∈ x0y, where
∇u refers to the u-directional derivative w.r.t. the x variable. To see
this, we consider the following function on ]− 1, 1[

σ(t) :=
(
||z − (x0 + tu)|| − ||z − x0||

)
−
(
||y − (x0 + tu)− ||y − x0||

)
.

The claim reads σ′(0) > 0. Note ||y− x0|| − ||y− (x0 + tu)|| = t||u||, so

σ(t) = ||z − (x0 + tu)|| − ||z − x0||+ t||u||, −1 < t < 1.
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Notice σ(0) = 0, σ(t) > 0 for t > 0 and σ(t) < 0 for t < 0 since the
norm || · || is strictly convex and z /∈ x0y. Also notice σ is convex, hence
σ′(0) > 0, showing the claim in this case. Now if z ∈ x0y with z and y
not on the same side of x0, then σ(t) = 2t||u|| for small t, so that again
σ′(0) > 0 and ∇uc(x0, y) < ∇uc(x0, z). Finally if z ∈ x0y with z and
y on the same side of x0, then σ′(0) = 0 and ∇uc(x0, y) = ∇uc(x0, z).
With (2.15) this clearly yields (2.16). Finally, a similar argument yields
(2.16) for the cost c(x, y) = −||x− y||.

Now if dim V0 ≥ 2, we can choose {y0, y1, ..., ym} such that they are
not aligned meanwhile (2.14) holds. But (2.16) then forces them to be
aligned, a contradiction. If dim V0 = 1 then since πx0 is centered at
x0, we can choose y0, y1 in the opposite direction with respect to x0,
i.e. (y0 − x0) · (y1 − x0) < 0. Also (y0 − y) · (y1 − y) < 0 by (2.14).
Then again (2.16) cannot hold, a contradiction. This yields supp πx0 ⊆
bd
(

conv(supp πx0)
)
. Now if supp πx0 * Ext(conv(supp πx0)), then again

we can find {y, y0, y1, ..., ym} ⊆ supp πx0 such that (2.14) holds. Then by
the above argument we deduce (2.16), a contradiction to the fact that
{y, y0, y1, ..., ym} ⊆ bd

(
conv(supp πx0)

)
, since a ray emanating from an

interior point of a convex set can intersect with its boundary at one
point only. Hence we get suppπx0 ⊆ Ext

(
conv(supp πx0)

)
, and as the

reverse inclusion is clear, we conclude suppπx0 = Ext
(

conv(supp πx0)
)
.

Notice this proves the theorem for πn = π
∣∣
In×Rd , the restriction of π on

In×Rd in Step 1. Finally, letting n→∞ for the domain In completes
the proof of Theorem 2.1 for any irreducible pair of marginals (µi, νi)i.

Step 4. We will prove the theorem for each pair of marginals (µi, νi)
only in convex order and not necessarily irreducible. It is well known
that any convex-ordered pair (µi, νi) can be decomposed as at most
countably many irreducible pairs, and the decomposition is uniquely
determined by the potential functions uµi , uνi . While more details can
be found in [5], [7], we provide the statement for reader’s convenience.

[7, Proposition 2.3] For each i ∈ [d], let (Ii,k)1≤k≤N be the open
components of the open set {uµi < uνi} in R, where N ∈ N∪{∞}. Let
Ii,0 = R \ ∪k≥1Ii,k and µi,k = µ

∣∣
Ii,k

for k ≥ 0, so that µi =
∑

k≥0 µi,k.

Then there exists a unique decomposition νi =
∑

k≥0 νi,k such that

µi,0 = νi,0, and (µi,k, νi,k) is irreducible for k ≥ 1 with µi,k(Ii,k) = µi,k(R).

Moreover, any πi ∈ MT(µi, νi) admits a unique decomposition πi =∑
k≥0 πi,k such that πi,k ∈ MT(µi,k, νi,k) for all k ≥ 0.
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Note that πi,0 must be the identity transport (i.e. πi,0 is concentrated
on the diagonal {(x, x) |x ∈ Ii,0}) since it is a martingale and µi,0 = νi,0.
There is no randomness in πi,0. Now for the rest of the proof we will
assume d = 2 to avoid notational difficulty, but one may observe the
same argument works for any d ≥ 3 just with some notational challenge.

Let π be a minimizer in (1.2) and let µ1 =
∑

k≥0 µ1,k, µ2 =
∑

k≥0 µ2,k

be the unique decomposition of µ1, µ2 respectively. Then our domain
R2 is decomposed as R2 = ∪m≥0,n≥0I1,m × I2,n accordingly. Now the
strategy is to study the geometry of π on each domain Im,n := I1,m×I2,n.

Let πm,n := π
∣∣
Im,n×R2 be the restriction of π on Im,n × R2. If m ≥ 1

and n ≥ 1, then (µ1,m, ν1,m) and (µ2,n, ν2,n) are both irreducible and
in this case we already established the theorem. On the other extreme,
that is if m = 0 and n = 0, then as mentioned above there is no
randomness in π0,0, that is π0,0 ∈ MT(π1

0,0, π
1
0,0) where π1

0,0 is a coupling
of µ1,0 and µ2,0. Hence π0,0 represents an identity transport, and thus
the theorem obviously holds in this case.

The remaining case is m = 0 and n ≥ 1. Write π = π0,n for simplicity
and recall that π = Law(X, Y ) where X = (X1, X2), Y = (Y1, Y2), and
(X1, Y1), (X2, Y2) are jointly martingales. Let γ1 = Law(X1, Y1) and
γ2 = Law(X2, Y2), so that π is a coupling of martingales γ1 and γ2. But
since µ1,0 = ν1,0 we have X1 = Y1, thus the cost is simplified as follows:

c(x, y) = ||(x1, x2)− (y1, y2)|| = ||(0, x2 − y2)|| =: ||x2 − y2||∗
where || · ||∗ is the restriction of the norm || · || on the second coordinate
axis in R2. Hence we have Eπ||X−Y || = Eγ2 ||X2−Y2||∗ and this implies
γ2 is an optimizer in VMT(µ2, ν2) with respect to || · ||∗. Now by the
irreducibility of (µ2, ν2) Step 3 already established the theorem for γ2,
hence the theorem also holds for π as γ1 is merely an identity transport.
This completes the proof of the theorem. �

We end this section with some examples that illustrate Theorem 2.1.

Example 2.2. We give a maximizer for (1.2) with c(x, y) = |x − y|.
As [32] observed, the inequality 1

2
(|x− y|− 1)2 ≥ 0 may be rewritten as

d∑
i=1

(
1

2

(
x2
i −

1

2d

)
− 1

2

(
y2
i +

1

2d

)
+ xi(yi − xi)

)
≤ −|x− y|.(2.17)

Fix any probability measure π1 ∈ P2(Rd). Choose a family of proba-
bilities (πx)x on Rd such that δx ≤c πx and πx(Sx,1) = 1 where Sx,1
is the unit sphere in Rd centered at x. Now define a martingale mea-
sure π by π := πx ⊗ π1. Then π is a maximizer in VMT(~µ, ~ν), where
~µ = (µ1, ..., µd) and ~ν = (ν1, ..., νd) are the one-dimensional marginals
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induced by π. The optimality of π follows from the fact that while the
integration of the left hand side of (2.17) by any γ ∈ VMT(~µ, ~ν) is a
constant, the inequality (2.17) becomes an equality precisely on the set
G := {(x, y) : |x− y| = 1}, and moreover π(G) = 1.

Example 2.3. We shall construct a minimizer for (1.2) with c(x, y) =
|x−y|. Denote by Leb

∣∣
I

the Lebesgue measure restricted on a set I. Let

d = 2, µ1 = µ2 = Leb
∣∣
[−1/2,1/2]

, ν1 = ν2 = 1
2
Leb

∣∣
[−1,1]

. Recall that the

projection of any element in VMT(~µ, ~ν) on the “first martingale space”
R2 belongs to MT(µ1, ν1), that is, if E[Y |X] = X then E[Y1|X1] = X1.
This implies P (c) ≥ P1(c), where P1(c) is the primal value of the one-
dimensional MOT problem

P1(c) := inf
π1∈MT(µ1,ν1)

∫
R×R
|x1 − y1| dπ1(x1, y1)(2.18)

simply because |x− y| ≥ |x1 − y1|. It is well known (see e.g. [5, Theo-
rem 7.4]) that the solution to (2.18), say γ1, is unique and there exist
functions T− : [−1

2
, 1

2
]→ [−1,−1

2
], T+ : [−1

2
, 1

2
]→ [1

2
, 1] such that

γ1
x1

=
1

2

(
δx1 + λ−(x1)δT−(x1) + λ+(x1)δT+(x1)

)
where

γ1 = γ1
x1
⊗ µ1 and λ±(x1) =

∣∣∣∣ T∓(x1)− x1

T+(x1)− T−(x1)

∣∣∣∣.
This means that the martingale γ1 splits the mass at each x1 ∈]−1, 1[ in
µ1 onto three points {T−(x1), x1, T

+(x1)}. Since the identity transport
x1 7→ x1 has no contribution to the cost (2.18), we see that

P1(c) =
1

2

∫ (
λ−(x1)|T−(x1)− x1|+ λ+(x1)|T+(x1)− x1|

)
dµ1(x1).

(2.19)

Now let us construct a minimizer π ∈ VMT(~µ, ~ν). For each x =
(x1, x2) ∈]− 1

2
, 1

2
[2 define a kernel πx ∈ P(R2) by

πx =
1

2

(
λ−(x1)δ(

T−(x1),x2

) + λ+(x1)δ(
T+(x1),x2

)
+ λ−(x2)δ(

x1,T−(x2)
) + λ+(x2)δ(

x1,T+(x2)
)).

Note that πx splits mass at x toward four directions – west, east, south
and north. Now let π1 ∈ Π(µ1, µ2) be any coupling of µ1, µ2, and define
π := πx⊗π1. Then notice that π ∈ VMT(~µ, ~ν), and moreover by (2.19),
we have

∫
|x− y|dπ = P1(c). Therefore, π is a minimizer.
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We note that this example gives a counterexample to the second con-
jecture given in [32] as πx is supported at four points rather than three.
But the existence question of such polytope-type MOTs still remains
open. For related results, we refer to [23].

The next example shows the strict convexity of the norm assumption
cannot be omitted in Theorem 2.1.

Example 2.4. Strict convexity of the norm is necessary for the ex-
tremal structure of VMOT. For an example, let d = 2, c(x, y) =
max(|x1 − y1|, |x2 − y2|), µ1 = µ2 = Leb

∣∣
[−1/2,1/2]

, ν1 = 1
2
(δ−10 + δ10),

ν2 = 1
2
Leb

∣∣
[−1,1]

. Observe every γ ∈ VMT(~µ, ~ν) leads to the same cost∫
|x1− y1| dγ1 where γ1 ∈ MT(µ1, ν1) (note MT(µ1, ν1) is a singleton).

Now clearly there are elements in VMT(~µ, ~ν) which do not satisfy The-
orem 2.1, for example one may take γ = γ1⊗γ2 where γ2 ∈ MT(µ2, ν2)
is independent of γ1 and its kernel {γ2

x}x are dispersed onto [−1, 1].

3. Existence of dual optimizers for VMOT – Theorem 1.2

One of the most important results for the proof of Theorem 1.2 is
Proposition 3.1, a compactness property of a class of convex functions.

Recall two probabilities in convex order µ ≤c ν is irreducible if I =
{x |uµ(x) < uν(x)} is connected and µ(I) = µ(R); see [7, Section
2]. In this case, (I, J) is called the domain of (µ, ν) where J is the
smallest interval satisfying ν(J) = ν(R), that is, J is the union of I
and any endpoints of I that are atoms of ν, and moreover, I = int(J) =
int(conv(supp(ν))). Note that µ ≤c ν is irreducible if and only if for
every π = πx ⊗ µ ∈ MT(µ, ν) and z ∈ I := int(conv(supp ν)), we have

µ(Iπz ) > 0 where Iπz := {x ∈ I | z ∈ int(conv(supp(πx)))}.(3.1)

In other words, (µ, ν) is irreducible if and only if for any z ∈ int(conv(supp ν)),
every π ∈ MT(µ, ν) must “cut across” the point z. This follows directly
from the definition of potential functions and Jensen’s inequality.

For irreducible pairs (µi, νi)i∈[d] with domains (Ii, Ji), let us define
I = I1×...×Id, J = J1×...×Jd and µ⊗ = µ1⊗...⊗µd, ν⊗ = ν1⊗...⊗νd.

Proposition 3.1. Let (µi, νi)i∈[d] be irreducible pairs of probabilities
with domains (Ii, Ji)i. Let a ∈ I, C ∈ R. Consider the following class
of functions Λ = Λ(a, C, ~µ, ~ν) where every χ ∈ Λ satisfies the following:

(1) χ is a real-valued convex function on J ,
(2) χ ≥ 0 and χ(a) = 0,
(3)

∫
χd(ν⊗ − µ⊗) ≤ C.
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Then Λ is locally bounded in the following sense: for each compact
subset K of J , there exists M = M(K) such that χ ≤ M on K for
every χ ∈ Λ. Moreover, for any sequence {χn}n in Λ there exists a
subsequence {χnj

}j of {χn}n and a real-valued convex function χ on J
such that limj→∞ χnj

(x) = χ(x) for every x ∈ J , and the convergence
is uniform on every compact subset of I.

We note that the proposition for the case d = 1 was proved in [7].
In this section we prove Theorem 1.2 while assuming Proposition 3.1,
whose proof will then be given in an appendix. During the proof the
bounding constant C may vary, but observe it does not depend on n.

Proof. Step 1. The assumption |c(x, y)| ≤
∑d

i=1

(
vi(xi) + wi(yi)

)
for

continuous vi ∈ L1(µi), wi ∈ L1(νi) ensures P (c) = D(c) as in (1.5)
(for a proof, see e.g. [58]). Moreover, it is obvious that a dual optimizer

exists for c(x, y) iff so does for c̃(x, y) := c(x, y)−
∑d

i=1

(
vi(xi)+wi(yi)

)
.

Hence by replacing c with c̃, from now on we will assume that c ≤ 0.
As P (c) = D(c) ∈ R, we can find an “approximating dual maxi-

mizer” (fi,n, gi,n, hi,n)n∈N which consist of real-valued continuous func-
tions fi,n ∈ L1(µi), gi,n ∈ L1(νi), and continuous bounded hi,n for every
i ∈ [d] and n ∈ N, such that the following weak duality holds:

d∑
i=1

(
fi,n(xi)− gi,n(yi) + hi,n(x)(yi − xi)

)
≤ c(x, y),(3.2)

d∑
i=1

( ∫
fi,ndµi −

∫
gi,ndνi

)
↗ P (c) as n→∞.(3.3)

Denote f⊕n (x) =
∑d

i=1 fi,n(xi), g
⊕
n (y) =

∑d
i=1 gi,n(yi), hn(x) =

(
h1,n(x), ..., hd,n(x)

)
.

By taking supremum over x ∈ Rd in (3.2), we get

χn(y) := sup
x∈Rd

(
f⊕n (x) + hn(x) · (y − x)

)
≤ g⊕n (y).(3.4)

Notice χn is a convex function on Rd, and by definition of χn, we see

f⊕n ≤ χn ≤ g⊕n ∀n ∈ N.(3.5)

In this step we shall obtain local uniform boundedness of {χn}n (3.8).
Let a ∈ I be fixed. By subtracting an appropriate linear function
Ln(y) = ∇Ln(x) · (y − x) + Ln(x) from (3.2), that is by replacing
f⊕n (x) with f⊕n (x) − Ln(x), g⊕n (y) with g⊕n (y) − Ln(y) and hn(x) with
hn(x)−∇Ln(x), we can assume

χn ≥ 0 and χn(a) = 0 ∀n.(3.6)
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Next, observe (3.5) gives∑
i

∫
gi,ndνi ≥

∫
χndν

⊕ ≥
∫
χndµ

⊕ ≥
∑
i

∫
fi,ndµi

where the second inequality is due to the convexity of χn and µi ≤c νi.
Then by (3.3), there exists a constant C > 0 such that∫

χn d(ν⊗ − µ⊗) ≤ C ∀n.(3.7)

Let {εk}k be a positive decreasing sequence tending to zero as k →∞,
and write Ii =]ai, bi[ where −∞ ≤ ai < bi ≤ +∞. Then we define the
compact interval Ji,k := [ci,k, di,k] for i ∈ [d] and k ∈ N as

If ai > −∞ then: νi(ai) = 0⇒ ci,k := ai + εk, νi(ai) > 0⇒ ci,k := ai,

If bi < +∞ then: νi(bi) = 0⇒ di,k := bi − εk, νi(bi) > 0⇒ di,k := bi,

If ai = −∞⇒ ci,k := −1/εk. If bi = +∞⇒ di,k := +1/εk.

Thus for example, if ν(ai) = 0 and ν(bi) > 0, then Ji,k = [ai + εk, bi].
Let ε1 be small so that µi(Ji,1) > 0, νi(Ji,1) > 0 for every i ∈ [d]. Notice
Ji,k ↗ Ji. Let Jk := J1,k × J2,k × ... × Jd,k. Then by Proposition 3.1,
there exists {Mk}k such that

0 ≤ sup
n
χn ≤Mk on Jk.(3.8)

Step 2. Let (fi,n, gi,n, hi,n)n∈N be an approximating dual maximizer.
We want to show pointwise convergence of fi,n and gi,n, i.e. fi,n(xi)→
fi(xi) ∈ R for µi-a.e. xi and gi,n(yi) → gi(yi) ∈ R for νi-a.e. yi as
n→∞. However, in establishing the convergence we see that there is
an immediate obstacle when d ≥ 2, that is, in the duality formulation
(3.2) one can always replace (fi,n)i∈[d] by (fi,n + Ci,n)i∈[d] for any con-
stants (Ci,n)i∈[d] satisfying

∑
iCi,n = 0 and similarly replace (gi,n)i∈[d]

by (gi,n+Di,n)i∈[d]. This means the convergence cannot be shown for any
approximating dual maximizer. In this step we will show there exists
an approximating dual maximizer which satisfies the convergence.

Take an approximating dual maximizer (fi,n, gi,n, hi,n)n∈N. Observe

C ≥
∫
g⊕n dν

⊗ −
∫
f⊕n dµ

⊗

≥
∫
χndν

⊗ −
∫
f⊕n dµ

⊗

≥
∫
χndµ

⊗ −
∫
f⊕n dµ

⊗

= ‖ χn − f⊕n ‖L1(µ⊗) ∀n
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where the third inequality is by convexity of χn and µ⊗ ≤c ν⊗. For
each k ∈ N, let µi,k be the restriction of µi on Ji,k then normalized to
be a probability measure. Let µ⊗k = ⊗iµi,k, so that µ⊗k (Jk) = 1. Define

vi,k,n =

∫
fi,n dµi,k, i ∈ [d], k ∈ N, n ∈ N.

Let us fix k ∈ N. We claim that

sup
n
‖ fi,n − vi,k,n ‖L1(µi,k) is bounded for each i ∈ [d].

To see this, recall supn ‖ χn − f⊕n ‖L1(µ⊗k ) is bounded and so by (3.8),

‖Mk − f⊕n ‖L1(µ⊗k )=‖Mk − χn ‖L1(µ⊗k ) + ‖ χn − f⊕n ‖L1(µ⊗k )≤Mk + C =: C.

The constant C may depend on k but not on n. From this and Jensen,

|v1,k,n + v2,k,n + ...+ vd,k,n| ≤ ‖ f⊕n ‖L1(µ⊗k )≤ C for all n.(3.9)

Next, note that as f⊕n ≤Mk on Jk, by taking supremum we see that

d∑
i=1

sup
xi∈Ji,k

fi,n(xi) ≤Mk ∀n,

and note that obviously vi,k,n ≤ supxi∈Ji,k fi,n(xi), so in particular

sup
x1∈J1,k

f1,n(x1) +
d∑
i=2

vi,k,n ≤Mk.

Define v̂1,k,n = −
∑d

i=2 vi,k,n and observe

C ≥ ‖Mk − f⊕n ‖L1(µ⊗k )= Mk −
∫

(f1,n +
d∑
i=2

vi,k,n)dµ1,k.

This implies that supn ‖ f1,n − v̂1,k,n ‖L1(µ1,k) is bounded, and then by
(3.9), supn ‖ f1,n − v1,k,n ‖L1(µ1,k) is bounded. The claim is proved.

We are now ready to apply the Komlós lemma, which states that
every L1-bounded sequence of real functions contains a subsequence
such that the arithmetic means of all its subsequences converge point-
wise almost everywhere. Define ṽ1,k,n = 1

n

∑n
m=1 v̂1,k,m, and ṽi,k,n =

1
n

∑n
m=1 vi,k,m for 2 ≤ i ≤ d. Observe that by repeated use of Komlós

lemma, for every i ∈ [d] and k ∈ N, we can find a subsequence {fi,k,n}n
of {fi,n}n such that

(1) {fi,k+1,n}n is a further susequence of {fi,k,n}n, and

(2) f̃i,k,n(xi)− ṽi,k,n converges for µi,k - a.e. xi as n→∞,
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where f̃i,k,n(x) = 1
n

∑n
m=1 fi,k,m(x). Select the diagonal sequence Fi,n :=

fi,n,n and again define wi,k,n =
∫
Fi,ndµi,k for 2 ≤ i ≤ d, ŵ1,k,n =

−
∑d

i=2wi,k,n, and F̃i,n(xi) = 1
n

∑n
m=1 Fi,m(xi), w̃1,k,n = 1

n

∑n
m=1 ŵ1,k,m,

and w̃i,k,n = 1
n

∑n
m=1wi,k,m for 2 ≤ i ≤ d. We finally claim that

F̃i,n(xi)− w̃i,1,n converges for µi − a.e. xi for every i ∈ [d].(3.10)

The point is that the dependence on k is now removed. To see this, as
{Fi,n}n is a subsequence of {fi,k,n}n for every k ∈ N, by Komlós lemma

F̃i,n(xi)− w̃i,k,n converges for µi,k − a.e. xi for every i ∈ [d].(3.11)

In particular, both {F̃i,n(xi)− w̃i,1,n}n and {F̃i,n(xi)− w̃i,k,n}n converge
for µi,1 - a.e. xi as n→∞, hence their difference {w̃i,1,n− w̃i,k,n}n must
converge for any fixed k. With (3.11) this implies (3.10).

Now having an approximating dual maximizer (Fi,n, Gi,n, Hi,n)n where
G,H followed the same subsequence as F did (and noting that (3.2)
and (3.3) are conserved while taking convex combinations), we can re-
peat the same procedure for Gi,n by starting from the uniform bound
‖ G⊕n − χn ‖L1(ν⊗)≤ C so that we get a further subsequence for which
similar statement as in (3.10) holds for Gi,n as well. Then a final appli-
cation of Komlós lemma (recall

∑
i w̃i,1,n = 0) yields an approximating

dual maximizer (F̃i,n, G̃i,n, H̃i,n)n which satisfies the claimed conver-
gence property.

Step 3. We’ve shown there exists a sequence of functions (fi,n, gi,n, hn)n
satisfying (3.2), (3.3) for each n, and admitting the limit functions
(fi, gi)i∈[d] such that as n → ∞, fi,n(xi) → fi(xi) for µi - a.e. xi and
gi,n(yi)→ gi(yi) for νi - a.e. yi. For convenience, define Ai and Bi to be
the set of convergence points, that is µi(Ai) = 1, νi(Bi) = 1, and

lim
n→∞

fi,n(xi) = fi(xi) ∈ R, lim
n→∞

gi,n(yi) = gi(yi) ∈ R ∀xi ∈ Ai, yi ∈ Bi.

Let A = A1× ...×Ad, B = B1× ...×Bd. Note that A ⊆ I, B ⊆ J , and
moreover the interior of the convex hull of B is I, i.e. int(conv(B)) = I.

In this step we will show the convergence of {χn}n defined in (3.4).
Fix a ∈ A so that limn→∞ f

⊕
n (a) = f⊕(a) =:

∑
i fi(a). As int(conv(B)) =

I, we can find points in B, say {y1, ..., ym}, such that limn→∞ g
⊕
n (yj) =

g⊕(yj) for every 1 ≤ j ≤ m and a ∈ int(conv({y1, ..., ym})). Then in
view of (3.5) we see that both {χn(a)}n and {∇χn(a)}n are uniformly
bounded in n, where ∇χn(a) ∈ ∂χn(a) is a subgradient of the convex
function χn at a. Hence by taking a subsequence, we can assume that
{χn(a)}n and {∇χn(a)}n both converge. Now define the affine function
Ln(y) = χn(a)+∇χn(a) ·(y−a) and replace f⊕n (x) with f⊕n (x)−Ln(x),
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g⊕n (y) with g⊕n (y)−Ln(y) and hn(x) with hn(x)−∇χn(a). Then we get
χn(a) = ∇χn(a) = 0 while the convergence property of fi,n, gi,n is re-
tained. And (3.7) and Proposition 3.1 yield limn→∞ χn = χ on J .

Step 4. We will show there exists a function h : I → Rd such that∑
i∈[d]

(
fi(xi)− gi(yi)

)
+ h(x) · (y − x) ≤ c(x, y) ∀x, y ∈ Rd.(3.12)

We may define fi = −∞ on R\Ai and gi = +∞ on R\Bi so that they
are defined everywhere on R. For a function ϕ defined on a subset of Rd

and bounded below by an affine function, let conv[ϕ] : Rd → R ∪ {∞}
denote the convex envelope of ϕ. Define

H(x, y) := conv[c(x, ·) + g⊕(·)](y).(3.13)

Then any measurable choice h satisfying h(x) ∈ ∂H(x, ·)(x) will satisfy
(3.12). To see this, we may argue similarly as [7]. Recall

f⊕n (x) + hn(x) · (y − x) ≤ c(x, y) + g⊕n (y).

If we define Hn(x, y) := conv[c(x, ·) + g⊕n (·)](y), then we have

f⊕n (x) + hn(x) · (y − x) ≤ Hn(x, y) ≤ c(x, y) + g⊕n (y).

In particular by taking y = x, we get f⊕n (x) ≤ Hn(x, x). Next, observe
that since the lim sup of convex functions is convex, we have

lim sup
n→∞

Hn(x, y) ≤ conv[lim sup
n→∞

(
c(x, ·) + g⊕n (·)

)
](y)

= conv[c(x, ·) + g⊕(·)](y) = H(x, y).

Then by the convergence f⊕n → f and the definition of H(x, y), we get

f(x) ≤ H(x, x), and H(x, y) ≤ c(x, y) + g⊕(y).

Since int(conv(B)) = I and g⊕ is real-valued on B, for each x ∈ I the
convex function y 7→ H(x, y) is real-valued thus continuous in I. The
subdifferential ∂H(x, ·)(y) is then nonempty, convex and compact for
every y ∈ I. Hence we can choose a measurable function h : I → Rd

satisfying h(x) ∈ ∂H(x, ·)(x). Any such choice yields (3.12) as follows:

f⊕(x)+h(x)·(y−x) ≤ H(x, x)+h(x)·(y−x) ≤ H(x, y) ≤ c(x, y)+g⊕(y).

Step 5. We will show that for any function h : I → Rd satisfying

f⊕(x)− g⊕(y) + h(x) · (y − x) ≤ c(x, y)(3.14)
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(we know that such a function exists by Step 4), and for any minimizer
π∗ for the problem (1.2), in fact we have

f⊕(x)− g⊕(y) + h(x) · (y − x) = c(x, y), π∗ − a.s..(3.15)

In other words, every minimizer π∗ is concentrated on the contact set

Γ := {(x, y) | f⊕(x)− g⊕(y) + h(x) · (y − x) = c(x, y)}

whenever h is chosen to satisfy (3.14). This will complete the proof.
To begin, recall fi,n → fi µi-a.s., gi,n → gi νi-a.s., and χn → χ on

J where χn is defined as (3.4) with χ being its limit. For any π ∈
VMT(~µ, ~ν) (not necessarily an optimizer), notice that c(x, y) ∈ L1(π)
by the assumption of Theorem 1.2. Now we claim:

lim sup
n→∞

∫ (
f⊕n (x)− g⊕n (y) + hn(x) · (y − x)

)
dπ

≤
∫ (

f⊕(x)− g⊕(y) + h(x) · (y − x)
)
dπ.

First, let us observe how the claim implies (3.15). Let π∗ be any min-
imizer for (1.2) (note that this exists by the assumption on the cost).
Then c(x, y) ∈ L1(π∗) and P (c) =

∫
c(x, y) dπ∗. Now we deduce

P (c) = lim
n→∞

∫ (
f⊕n (x)− g⊕n (y) + hn(x) · (y − x)

)
dπ∗

≤
∫ (

f⊕(x)− g⊕(y) + h(x) · (y − x)
)
dπ∗

≤
∫
c(x, y) dπ∗

= P (c)

hence equality holds throughout, and this implies (3.15).
If we have pointwise convergence hn(x)→ h(x) then the claim would

have been a simple consequence of Fatou’s lemma, but we do not know
such a convergence a priori. But [7] suggested a clever idea to handle
this case and let us carry out a similar scheme in the current Rd setting.

Fix any π ∈ VMT(~µ, ~ν) and let π1 := px#π, π2 := py#π. Then as in

Step 2 (but π1 ≤c π2 instead of µ⊗ ≤c ν⊗), by (3.3) and (3.5) we get

sup
n
||χn − f⊕n ||L1(π1) <∞, sup

n
||g⊕n − χn||L1(π2) <∞.
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From this, as f⊕n → f⊕, g⊕n → g⊕, χn → χ, by Fatou’s lemma we get

χ− f⊕ ∈ L1(π1), g⊕ − χ ∈ L1(π2),

lim sup
n→∞

∫
(f⊕n − χn) dπ1 ≤

∫
(f⊕ − χ) dπ1,

lim sup
n→∞

∫
(χn − g⊕n ) dπ2 ≤

∫
(χ− g⊕) dπ2.

This allows us to proceed

lim sup
n→∞

∫ (
f⊕n (x)− g⊕n (y) + hn(x) · (y − x)

)
dπ

= lim sup
n→∞

∫ (
f⊕n (x)− χn(x) + χn(y)− g⊕n (y)

+ χn(x)− χn(y) + hn(x) · (y − x)
)
dπ

≤
∫

(f⊕ − χ) dπ1 +

∫
(χ− g⊕) dπ2

+ lim sup
n→∞

∫ (
χn(x)− χn(y) + hn(x) · (y − x)

)
dπ.

To handle the last term, let π = πx ⊗ π1, and let ξn : I → Rd be a
sequence of functions satisfying ξn(x) ∈ ∂χn(x). Then we compute∫ (

χn(x)− χn(y) + hn(x) · (y − x)
)
dπ

=

∫∫ (
χn(x)− χn(y) + hn(x) · (y − x)

)
dπx(y) dπ1(x)

=

∫∫ (
χn(x)− χn(y) + ξn(x) · (y − x)

)
dπx(y) dπ1(x),

since
∫
hn(x) · (y−x) dπx(y) =

∫
ξn(x) · (y−x) dπx(y) = 0. Notice that

the last integrand is nonpositive. Thus by Fatou’s lemma,

lim sup
n→∞

∫ (
χn(x)− χn(y) + hn(x) · (y − x)

)
dπ

≤
∫

lim sup
n→∞

(∫ (
χn(x)− χn(y) + ξn(x) · (y − x)

)
dπx(y)

)
dπ1(x)

≤
∫ (∫ (

χ(x)− χ(y) + ξ(x) · (y − x)
)
dπx(y)

)
dπ1(x)
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for some ξ(x) ∈ ∂χ(x) which is a limit point of the bounded sequence
{ξn(x)}n. Finally, in the last line, the inner integral equals∫ (

χ(x) + h(x) · (y − x)− χ(y)
)
dπx(y).

This proves the claim, hence the theorem. �

Remark 3.2. In Step 5 we deduced χ−f⊕ ∈ L1(π1), g⊕−χ ∈ L1(π2)
for every π ∈ VMT(~µ, ~ν). Is fi ∈ L1(µi) or gi ∈ L1(νi)? Even in one-
dimension and in a fairly mild situation such as c(x, y) is 1-Lipschitz
and µ, ν are irreducible and compactly supported, it can happen that
neither f ∈ L1(µ) nor g ∈ L1(ν), as shown by examples in [7]. We may
extend the notion of generalized integral of the pair (f, g) introduced
in [7] to the VMOT setup via (compare with [7, Definition 4.7])

π1(f⊕)− π2(g⊕) := π1(f⊕ − χ)− π2(g⊕ − χ) + (π1 − π2)(χ).(3.16)

For this definition to be meaningful, it is desired that the right hand
side would not depend on the choice of π, since this will then allow us
to write the left hand side as e.g. ~µ(f⊕) − ~ν(g⊕). Although this looks
fairly plausible, we shall not pursue this point further in this paper.

4. Further results on the structure of VMOT

In this section, we present two more structural results for VMOT.
Recall the proof of Theorem 2.1 was based on the differential identity

∇x

(∑
i∈[d]

(
fi(xi)−gi(yi)+hi(x)(yi−xi)

)
−c(x, y)

)
= 0, π∗−a.e. (x, y)

where π∗ is a VMOT and (fi,−gi, hi)i is a PDM. On the other hand, the
next result shall be obtained via the differential identity in y variable:

∇y

(∑
i∈[d]

(
fi(xi)−gi(yi)+hi(x)(yi−xi)

)
−c(x, y)

)
= 0, π∗−a.e. (x, y).

Theorem 4.1. Assume the same as in Theorem 1.2. Let S be a proper
subset of [d] and assume that νi is absolutely continuous with respect to
Lebesgue measure for every i ∈ S. Suppose c(x, y) is semiconcave in y
in the following sense: there exists ui : Ji → R for all i ∈ [d] such that

y 7→ c(x, y) +
∑
i

ui(yi) is concave on J for every x ∈ I.
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Assume the following twist condition: for each x ∈ I and yi ∈ Ji where
i ∈ S, the mapping

(yj)j∈[d]\S 7→
(
∂c(x, y)

∂yi

)
i∈S

is one-to-one on ⊗
j∈[d]\S

Jj(4.1)

whenever the derivatives exist. Then there exists a family of functions
Fx : R|S| → Rd−|S| for each x ∈ Rd such that for any minimizer π =
πx ⊗ π1 of (1.2), πx is concentrated on the graph of Fx for π1-a.e. x.

We note that the definition of semiconcavity here is so broad that
there is no regularity imposed on ui other than that it be real-valued
and measurable.

Proof. The same assumption as in Theorem 1.2 ensures there is a PDM.
By the semiconcavity on the cost, we can assume that y 7→ c(x, y) is
concave for every x ∈ I for which (fi,−gi, hi)i is a PDM, that is

f⊕(x) + h(x) · (y − x)− c(x, y) ≤ g⊕(y) ∀x, y ∈ Rd,

and for any minimizer π ∈ VMT(~µ, ~ν) of the primal problem (1.2),

f⊕(x) + h(x) · (y − x)− c(x, y) = g⊕(y) π − a.e. (x, y).

Consider the “inverse martingale Legendre transform” (see [32])

β(y) := sup
x∈I
{f⊕(x) + h(x) · (y − x)− c(x, y)}.(4.2)

Notice β is convex and β ≤
∑

i gi. By replacing gi’s with its Legendre
transform ψi’s with respect to the “cost” β, that is, defining ψi succes-
sively for i = 1, 2, ..., d by

ψi(yi) := sup
yj , j 6=i

(
β(y)−

∑
j<i

ψj(yj)−
∑
j>i

gj(yj)
)
,

we find that ψi are convex, and

β(y) ≤
d∑
i=1

ψi(yi) ∀y ∈ Rd, and β(y) =
d∑
i=1

ψi(yi) π2 − a.e. y,

where π2 = py#π as usual. Let us define the contact set

G = {(x, y) ∈ R2d | f⊕(x) + h(x) · (y − x)− c(x, y) = β(y) = ψ⊕(y)}.
Let us slightly refine G as follows, and define its projections:

H = {(x, y) ∈ G |ψi is differentiable at yi for every i ∈ S}
XH = {x ∈ Rd | ∃y s.t. (x, y) ∈ H}, YH = {y ∈ Rd | ∃x s.t. (x, y) ∈ H}.

As νi � L for all i ∈ S and ψi is convex, π(H) = 1 for any VMOT π.
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Now we claim that for any (x, y) ∈ H and i ∈ S,

∂ψi
∂yi

(yi),
∂β

∂yi
(y) and

∂c

∂yi
(x, y) exist, and(4.3)

∂ψi
∂yi

(yi) =
∂β

∂yi
(y) = hi(x)− ∂c

∂yi
(x, y).(4.4)

Of course ∂ψi

∂yi
(yi) exists by definition of H. Also from the definition

ψi(yi) = sup
yj ,j 6=i

(
β(y)−

∑
j 6=i

ψj(yj)
)

we see that the first equality in (4.4) holds since the supremum is
attained at y = (yi)i and both ψi and β are convex. Then in turn
since the supremum in (4.2) is attained at (x, y) and both β and y 7→
h(x) · (y − x)− c(x, y) are convex, the second equality holds as well.

For each x ∈ XH define the slice set Hx := {y | (x, y) ∈ H}, and
for y = (y1, ..., yd) ∈ Rd define the projection yS ∈ R|S| of y to be the
collection of those yi’s with i ∈ S. Now by (4.4) and the twist condition
(4.1), we see that if y1, y2 ∈ Hx and y1

S = y2
S, then we must have y1 = y2.

This implies that we can define a function Fx : R|S| → Rd−|S| such that
the set Hx is contained in the graph of Fx for every x ∈ XH . Finally as
π(H) = 1, we have πx(Hx) = 1 for π1-a.e.x, completing the proof. �

Remark 4.2. In Theorem 4.1 if one could obtain a dual maximizer
(fi,−gi, hi)i where all gi’s and y 7→ c(x, y) are differentiable, then the
family of maps {Fx}x could be directly obtained by the above differential
identity in y; see the next example. But instead the semiconcavity was
assumed in the theorem in order to deal with more general costs.

Example 4.3. Set d = 2 and c(x, y) = −y1y2, so that we consider the
covariance maximization problem of Y1, Y2. Let (fi,−gi, hi) be a PDM.
In this case we can assume that g1, g2 are convex, since we can replace
g1 by the following Legendre transform g̃1 (and similarly for g2)

g̃1(y1) := sup
x1,x2,y2

( 2∑
i=1

(
fi(xi) +hi(x1, x2) · (yi−xi)

)
− c(x, y)− g2(y2)

)
.

So g1, g2 are differentiable a.e., and the differential identity in y1 reads

y2 = g′1(y1)− h1(x1, x2)

which represents the function y2 = Fx(y1) in Theorem 4.1. Interest-
ingly, even though c(x, y) has no dependence on x, Fx still depends
on x via the “trading strategy” h1. This is due to the randomness of
X1, X2 and the martingale constraint E[Y |X] = X. Note that if X1, X2

are nonrandom, then one can take h1 ≡ 0 and the function becomes the
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monotone map. Nonetheless, observe that even if X1, X2 are random,
the dependence of the functions y2 = Fx(y1) on x is mild; for any given
marginal (~µ, ~ν), their graphs are merely translations in y2 direction.

Theorem 2.1 and Theorem 4.1 discussed the optimal structure of
(πx)x for VMOT π = πx ⊗ π1. Would π1 = px#π and π2 = py#π also
have some optimality property? To discuss, recall (2.3), (3.13) where
we defined y 7→ H(x, y) to be the convex envelope of y 7→ c(x, y)+g⊕(y)
and set α(x) = H(x, x). Also recall β is defined by (4.2). The following
theorem shows the optimality of π1, π2 with respect to the costs α, β
respectively from a classical duality theorem of Kellerer [42].

Theorem 4.4. Let π ∈ VMT(~µ, ~ν) be a minimizer for (1.2) and let
(fi,−gi, hi)i∈[d] be a dual maximizer. Then π1, π2 satisfy the following:∑

i

fi(xi) ≤ α(x) ∀x ∈ Rd, and
∑
i

fi(xi) = α(x) π1 − a.e. x,(4.5) ∑
i

gi(yi) ≥ β(y) ∀y ∈ Rd, and
∑
i

gi(yi) = β(y) π2 − a.e. y.(4.6)

Proof. Recall f⊕(x)+h(x)·(y−x) ≤ c(x, y)+g⊕(y). Then by convexity,

f⊕(x) + h(x) · (y − x) ≤ H(x, y) ≤ c(x, y) + g⊕(y).(4.7)

By setting y = x in the first inequality, we get f⊕(x) ≤ H(x, x) =: α(x),
and notice from the first inequality that if f⊕(x) = α(x) then h(x) must
belong to the subdifferential of the convex function y 7→ H(x, y) at x.
Now since (4.7) must hold as equalities for π-a.e. (x, y) and δx ≤c πx,
we deduce that f⊕(x) = α(x) must hold π1-a.e. x. This yields (4.5).

The proof of (4.6) is similar. By definition of β, we have

f⊕(x) + h(x) · (y − x)− c(x, y) ≤ β(y) ≤ g⊕(y)(4.8)

and moreover (4.8) must hold as equalities π-a.s.. This yields (4.6). �

Example 4.5. In Example 2.2 and 2.3, the optimality of π did not
imply any constrained structure on π1, since π1 could be any coupling
of (µ1, ..., µd) there. In this example we shall see that for some data (i.e.
cost and marginals), π1 may have to be constrained. As in the previous
example, let d = 2 and c(x, y) = −y1y2.

It is well known that the monotone coupling, which is the coupling
concentrated on an increasing graph, minimizes the cost (i.e. maximizes
E[Y1Y2]) among all couplings of ν1, ν2. But in our VMOT setting, the
monotone coupling may not be feasible to be π2 since we have to satisfy
π1 ≤c π2 but there may not exist such a π1. Still, π2 may try to be as
close as possible to the monotone coupling, and this in turn may affect
the structure of π1. We explore this phenomenon with explicit examples.
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Firstly, as a toy model let the marginals be those in Example 2.3:
µ1 = µ2 = Leb

∣∣
[−1/2,1/2]

, ν1 = ν2 = 1
2
Leb

∣∣
[−1,1]

and let π be a VMOT.

As maximizing E[Y1Y2] is equivalent to minimizing E1
2
|Y1 − Y2|2, it is

better for π2 to stay near the diagonal ∆ := {(y1, y2) | y1 = y2}. With
this simple data (~µ, ~ν) it is feasible for π2 to be supported on ∆, and
since π1 ≤c π2, this implies π1 must also be supported on ∆. This
uniquely determines π1, π2, and any martingale measure π connecting
π1, π2 is optimal. Thus a VMOT π is nonunique but π1, π2 are unique.

For another example, let µ1, µ2 be arbitrary but fixed. The main goal
is to build a VMOT π∗ such that its first marginal π∗1 is the monotone
coupling of arbitrarily given marginals µ1, µ2. To this end, set g1(y1) =
1
2
|y1|2, g2(y2) = 1

2
|y2|2, so that c(x, y)+g1(y1)+g2(y2) = 1

2
|y1−y2|2. Now

since 1
2
|y1−y2|2 is already convex in y, the first derived cost α appearing

in Theorem 4.4 must be the same, i.e. α(x) = 1
2
|x1−x2|2. This implies

h(x) = ∇α(x) = (x1 − x2, x2 − x1), thus y 7→ α(x) + h(x) · (y − x) is
the tangent plane to y 7→ c(x, y) + g1(y1) + g2(y2) at x. In this simple
case, it is easy to see what the contact set is given by:

G :={(x, y) |α(x) + h(x) · (y − x) = c(x, y) + g1(y1) + g2(y2)}
={(x, y) | y − x = λ(1, 1) for some λ ∈ R}.

Now choose a martingale measure π∗ which satisfies that π∗(G) = 1, for
which its first induced coupling π∗1 = px#π

∗ is the monotone coupling of
µ1, µ2. This implies there exist Kantorovich potentials f1, f2 such that

f1(x1) + f2(x2) ≤ α(x) ∀x = (x1, x2), and(4.9)

f1(x1) + f2(x2) = α(x) π∗1 − a.e. x.(4.10)

Let ν∗1 , ν
∗
2 be the one-dimensional marginals of π∗2 = py#π

∗. Then the
fact π∗(G) = 1 and (4.9), (4.10) imply that π∗ is optimal in the class
VMT(µ1, µ2, ν

∗
1 , ν

∗
2). Moreover, any optimal π ∈ VMT(µ1, µ2, ν

∗
1 , ν

∗
2)

must satisfy π1 = π∗1 since (4.9), (4.10) must hold for π1 as well.

In this example the choices gi(yi) = 1
2
|yi|2 were made with no specific

reason, and due to this the π∗ constructed there may not fit to a pre-
scribed marginal data (~µ, ~ν). Theorem 1.2 asserts that for any cost and
irreducible marginal data one can obtain a dual optimizer such that
the contact set (1.6) can accommodate all VMOTs. Moreover, we have
illustrated that some careful analysis of the contact set can provide
information on the structure of VMOTs, as shown in Theorem 2.1, 4.1.

Lastly, motivated by this example, we address the following question:
what conditions on the data (~µ, ~ν) and cost c(x, y) shall impose on the
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induced optimal couplings π1, π2 to have some specific structures, e.g.
π1 or π2 has to lie on “small” sets? We leave this to future research.

Appendix A. Compactness of the convex potentials

We prove Proposition 3.1 which we restate for reader’s convenience.

Proposition A.1. Let (µi, νi)i∈[d] be irreducible pairs of probabilities
with domains (Ii, Ji)i. Let a ∈ I, C ∈ R. Consider the following class
of functions Λ = Λ(a, C, ~µ, ~ν) where every χ ∈ Λ satisfies the following:

(1) χ is a real-valued convex function on J ,
(2) χ ≥ 0 and χ(a) = 0,
(3)

∫
χd(ν⊗ − µ⊗) ≤ C.

Then Λ is locally bounded in the following sense: for each compact
subset K of J , there exists M = M(K) such that χ ≤ M on K for
every χ ∈ Λ. Moreover, for any sequence {χn}n in Λ there exists a
subsequence {χnj

}j of {χn}n and a real-valued convex function χ on J
such that limj→∞ χnj

(x) = χ(x) for every x ∈ J , and the convergence
is uniform on every compact subset of I.

The following class of two-way martingales will also be used often.

Definition A.2. (1) We define ζ = ζx→(y−,y+) to be a simple martin-
gale measure in R×R such that px#ζ is supported at a point (say x), and
py#ζ is supported at two distinct points (say y−, y+). Then necessarily

y− < x < y+, and ζ can be written as

ζx→(y−,y+) =
y+ − x
y+ − y−

δ(x,y−) +
x− y−

y+ − y−
δ(x,y+).

Then we define m to be the set of all such simple martingale measures.
(2) Let M be the set of martingale measures in R × R such that any
π = πx⊗π1 ∈M satisfies πx⊗ δx ∈ m for π1–a.e. x, where π1 = px#π.

(3) We define M(µ, ν) := M ∩MT(µ, ν).

Proof of Proposition A.1. Step 1. In this step we will prove for the
simplest marginal case where d = 1 and there exists ζ = ζx→(y−,y+) ∈ m

such that µ = px#ζ and ν = py#ζ, that is µ = δx and ν = y+−x
y+−y− δy− +

x−y−
y+−y− δy+ . For x, y ∈ R, x 6= y, define the open / closed transport rays

Kx, yJ= {(1− t)x+ ty | 0 < t < 1}, Jx, yK = {(1− t)x+ ty | 0 ≤ t ≤ 1}.
Suppose there is a ∈ I = Ky−, y+J and C > 0 such that χ(a) = 0,

χ ≥ 0 and
∫
χd(ν − µ) ≤ C for every χ ∈ Λ. First, consider the case

a = x. Then it is trivial that there is a constant M > 0 such that
χ(y−) ≤ M and χ(y+) ≤ M for all χ, since

∫
χd(ν − µ) =

∫
χdν =
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y+−x
y+−y−χ(y−) + x−y−

y+−y−χ(y+) ≤ C. By convexity of χ, we find χ ≤ M on

Jy−, y+K for every χ ∈ Λ, proving the theorem in this most simple case.
Next, consider the case that a is away from x, e.g. y− < a < x. The

idea is to find probability measures µ̃, ν̃ where µ ≤c µ̃ ≤c ν̃ ≤c ν, and to
find a small but positive constant θ (which does not depend on χ ∈ Λ)
such that the martingale measure η := θ ζa→(y−,y+) satisfies η ≤ π̃
for some π̃ ∈ MT(µ̃, ν̃), i.e., for some martingale measure π̃ having
marginals µ̃, ν̃. If we can do so, then since π̃ − η is still a martingale,
we infer from

∫
χd(ν̃ − µ̃) ≤ C that we have

∫
χd(py#η − px#η) ≤ C.

Then as η := θ ζa→(y−,y+), we are reduced to the previous case and
the proposition follows. Now for this, we can simply take ν̃ = ν and
µ̃ = py#ζx→(a,y+). Since y− < a < x, clearly µ̃ ≤c ν. Then notice we can

take θ = µ̃(a) = y+−x
y+−a , implying π̃ = η + µ̃(y+)δ(y+,y+); see figure (1a).

We can describe this procedure in terms of Brownian motion and
stopping time, namely, let (Bx

t )t denote a Brownian motion starting at
x, and define the stopping time τ = inf{t ≥ 0 |Bx

t /∈]y−, y+[}. Then
Law(Bx

τ ) = ν. Next, define τ 1 = inf{t ≥ 0 |Bx
t /∈]a, y+[} and µ̃ =

Law(Bx
τ1). Then as τ 1 ≤ τ we have µ̃ ≤c ν. Finally, define τ 2 as the

following: if Bx
τ1 = y+ then let τ 2 = τ 1, and if Bx

τ1 = a then let
τ 2 = τ 1 + inf{t ≥ 0 |Ba

t /∈]y−, y+[}. We may define ν̃ = Law(Bx
τ2), but

in this case ν̃ = ν simply because τ 2 = τ .
The case x < a < y+ can be treated similarly and Step 1 is done.
Step 2. In this step we will prove for the case where (µ, ν) are the

marginals of a martingale measure of the form π :=
∑N

i=1 piζxi→(y−i ,y
+
i ).

Here N ≥ 2, pi > 0,
∑
pi = 1, and the family ζxi→(y−i ,y

+
i ) ∈ m, i =

1, 2, ..., N is assumed to satisfy the following chain condition: if we let
lk = mini≤k y

−
i , rk = maxi≤k y

+
i , then

Klk, rkJ ∩ Ky−k+1, y
+
k+1J 6= ∅, ∀k = 1, ..., N − 1.

The chain condition immediately implies that (µ, ν) is irreducible. As it
is enough to prove this step with N = 2 let us assume N = 2. Without
loss of generality assume a ∈Ky−1 , y

+
1 J such that χ(a) = 0, χ ≥ 0 and∫

χd(ν − µ) ≤ C for every χ ∈ Λ. Then since p1ζx1→(y−1 ,y
+
1 ) ≤ π, by

Step 1 we see that there exist M1,M
′
1 > 0 such that for every χ ∈ Λ

(1) χ ≤M1 on Jy−1 , y
+
1 K, and

(2) ∇χ ≤M ′
1 on Jy−1 + ε, y+

1 − εK, for any fixed ε > 0.

M ′
1 may depend on ε but notice it does not depend on χ ∈ Λ. Note

that (1) follows from Step 1 and (2) follows from (1) and the fact that
χ is convex. Now take ε small enough such that

Ky−1 + ε, y+
1 − εJ ∩ Ky−2 + ε, y+

2 − εJ 6= ∅.



VECTORIAL MARTINGALE OPTIMAL TRANSPORT 31

(a) Step 1 (b) Step 3

Figure 1. Martingale constructions in Step 1 and 3

Fix a point b ∈ Ky−1 + ε, y+
1 − εJ ∩ Ky−2 + ε, y+

2 − εJ and take any χ ∈ Λ.
Let Lχ be an affine function which supports the convex function χ at b,
that is Lχ(b) = χ(b),∇Lχ(b) ∈ ∂χ(b). Note that, by (1) and (2), Lχ(b)
and ∇Lχ(b) are bounded independently of χ. Let χ̃ = χ − Lχ. Then
χ̃(b) = 0, χ̃ ≥ 0 and

∫
χ̃ d(ν − µ) ≤ C, hence by the observation (1),

(2) and the Step 1 we deduce there exists M2 > 0 such that for every
χ ∈ Λ we have χ ≤M2 on Jy−2 , y

+
2 K. Generalization to arbitrary N ∈ N

is immediate through the chain condition, and this completes Step 2.

Step 3. In this step we will prove for a general irreducible pair
(µ, ν) with domain (I, J) but still in dimension d = 1. In this case, it
is well-known that there exists a probability measure µ̃ such that µ̃ is
absolutely continuous with respect to Lebesgue measure, µ ≤c µ̃ ≤c ν,
and (µ̃, ν) is irreducible with the same domain (I, J). One way to see
this is the following: consider uµ, uν , the potential functions of µ, ν.
They coincide outside of I while uµ < uν in I by irreducibility. Select a
convex function u such that uµ = u = uν outside of I while uµ < u < uν
in I. Then µ̃ is taken to be the second derivative measure of u, and by
selecting sufficiently smooth u one gets the desired absolute continuity.

Hence from now on we will assume without loss of generality that
µ � L1. Also note that we can assume µ ∧ ν = 0 since the pair
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(µ− µ ∧ ν, ν − µ ∧ ν) is irreducible with domain (I, J) and
∫
χd
(
(ν −

µ∧ν)− (µ−µ∧ν)
)
≤ C. Thus, we will assume µ� L1 and µ∧ν = 0.

Our strategy is to reduce this situation to Step 1 and Step 2. For this,
we begin by choosing a martingale measure π ∈M(µ, ν). We can obtain
such a π by solving the MOT problem w.r.t. the cost c(x, y) = ±|x−y|
[38], [39], [5]. Let x 7→ y−(x), x 7→ y+(x) be two functions supporting

π = πx ⊗ µ, that is πx = y+(x)−x
y+(x)−y−(x)

δy−(x) + x−y−(x)
y+(x)−y−(x)

δy+(x) µ - a.e. x.

Now set Γ := suppπ such that π(Γ) = 1 and for any (x, y) ∈ Γ and
r > 0, the restricted measure π

∣∣
B(x,r)×B(y,r)

has strictly positive mass

by the property of support. Pick (x0, y0) ∈ Γ and suppose x0 < y0. Fix
z ∈Kx0, y0J and let r > 0 be so small that xr := x0+r < z < yr := y0−r.
Now we claim the following: there exist positive measures µ̃, ν̃, µ̃A, ν̃A
satisfying µ̃A ≤c µ̃ ≤c ν̃ ≤c ν̃A, martingale measures π̃ ∈ MT(µ̃, ν̃),

πA ∈ MT(µ̃A, ν̃A) such that πA ≤ π, and a positive constant θ̃ such

that the measure η := θ̃ ζz→(xr,yr) satisfies η ≤ π̃. Notice this yields∫
χd(ν − µ) ≥

∫
χd(py#η − px#η) as desired. See figure (1b).

To see this, note that the set A := {x ∈ B(x0, r) | y+(x) ∈ B(y0, r)}
has µ – positive measure since π

(
B(x0, r) × B(y0, r)

)
> 0. For each

x ∈ A, consider the martingale measure ζx→(y−(x),y+(x)). Recall y−(x) <
x < xr < z < yr < y+(x). Now we apply the same idea as in Step
1: Let τx = inf{t ≥ 0 |Bx

t /∈]y−(x), y+(x)[} and τ 1
x = inf{t ≥ 0 |Bx

t /∈
]y−(x), z[}. Then define τ 2

x as follows: if Bx
τ1x

= y−(x) then τ 2
x = τ 1

x , and

if Bx
τ1x

= z then τ 2
x = τ 1

x + inf{t ≥ 0 |Bz
t /∈]xr, yr[}. Then clearly

δx ≤c Law(Bx
τ1x

) ≤c Law(Bx
τ2x

) ≤c Law(Bx
τx).(A.1)

With θ = θ(x, z) := Law(Bx
τ1x

)({z}) = x−y−(x)
z−y−(x)

, θ ζz→(xr,yr) satisfies

θ ζz→(xr,yr) ≤ Law(Bx
τ1x
, Bx

τ2x
),(A.2)

where Law(Bx
τ1x
, Bx

τ2x
) is the joint law of Bx

τ1x
and Bx

τ2x
hence is a martin-

gale measure with marginals Law(Bx
τ1x

), Law(Bx
τ2x

). Finally, set

θ̃(z) =

∫
A

θ(x, z) dµ(x).

Notice θ̃(z) > 0. We claim that the measure θ̃ ζz→(xr,yr) satisfies the
desired property. To see this, consider the restricted measure πA :=
π
∣∣
A×R ∈ MT(µ̃A, ν̃A) where µ̃A := px#πA, ν̃A := py#πA. Define µ̃ =∫
A

Law(Bx
τ1x

) dµ(x), ν̃ =
∫
A

Law(Bx
τ2x

) dµ(x). Then in view of (A.1) we

have µ̃A ≤c µ̃ ≤c ν̃ ≤c ν̃A, and by (A.2) and η := θ̃ ζz→(xr,yr) we have
η ≤ π̃ for some π̃ ∈ MT(µ̃, ν̃), where π̃ is driven by the Brownian
motion Bx between times τ 1

x and τ 2
x for µ

∣∣
A

– a.e. x.
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In summary, we have shown that for any (x, y) ∈ Γ and z ∈Kx, yJ and
any sufficiently small r > 0, we can find µ̃, ν̃, µ̃A, ν̃A where µ̃A ≤c µ̃ ≤c
ν̃ ≤c ν̃A and martingale measures π̃ ∈ MT(µ̃, ν̃), πA ∈ MT(µ̃A, ν̃A)

such that πA ≤ π, and a positive constant θ̃ such that the measure
η := θ̃ ζz→(xr,yr) satisfies η ≤ π̃. Now we make the following observation.
Since π(Γ) = 1, for any z ∈ I there exists (xz, yz) ∈ Γ such that
z ∈Kxz, yzJ, since otherwise we would have uµ(z) = uν(z), contradicting
to the irreducibility of (µ, ν). We choose such (xz, yz) ∈ Γ for each
z ∈ I so that { Kxz, yzJ }z∈I is an open cover of I. Hence we can find a
sequence (zn)n∈N such that { Kxzn , yznJ }n∈N is an open cover of I, and
if lk := minn≤k xzn , rk := maxn≤k yzn , then Klk, rkJ ∩ Kxzk+1

, yzk+1
J 6= ∅

for all k ∈ N, namely, the chain condition.
Now Step 2 implies that for each compact interval K ⊆ I, there

exists MK > 0 such that χ ≤ MK on K for every χ ∈ Λ, which is
the content of the proposition when ν has no mass on the boundary
of I. To see this, observe that for a compact K there is N ∈ N such
that { Kxzn , yznJ }n≤N is an open cover of K, so for small r > 0 the
shrunken covering { Kxzn + r, yzn − rJ }n≤N still covers K and satisfies
the chain condition, hence Step 2 applies. This completes Step 3 for
the case ν(I) = 1. Now the remaining case when ν assigns positive
mass on the boundary of I is simple. Write I =]a, b[ and suppose b ∈ R
and ν(b) > 0. Recall that π ∈ M(µ, ν) and x 7→ (y−(x), y+(x)) is the
graph of π. Let A := {x | y+(x) = b}. ν(b) > 0 implies µ(A) > 0. Take
any x ∈ A satisfying (x, b) ∈ Γ. Then the previous argument shows
that for any r > 0 and z ∈]x + r, b[, we can find measures µ̃, ν̃, µ̃A, ν̃A
where µ̃A ≤c µ̃ ≤c ν̃ ≤c ν̃A, martingale measures π̃ ∈ MT(µ̃, ν̃), πA ∈
MT(µ̃A, ν̃A) such that πA ≤ π, and θ̃ > 0 such that η := θ̃ ζz→(x+r,b)

satisfies η ≤ π̃. Step 2 then yields for any t ∈ I, there exists M > 0
such that χ ≤M on [t, b] for every χ.

The case ν(a) > 0 can be treated similarly, and finally note that if
both ν(a) > 0 and ν(b) > 0 then we can conclude that there exists
M > 0 such that χ ≤M on [a, b] for every χ ∈ Λ, because [a, b] can be
covered with finitely many appropriate intervals that we have discussed
so far. The proof is therefore complete for the one-dimension case.

Step 4. In this step we will prove the local uniform bound χ ≤ M
for general d ∈ N. We will see how the ideas from the previous steps
can be applied in the same way, but with more notational difficulty;
this is why we take a different approach than [7] in establishing the
local uniform bound of χ for d = 1 in the previous steps.
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Fix d ∈ N. As in Step 1, we begin with the most simple case where for
each i ∈ [d] there is ζi = ζxi→(y−i ,y

+
i ) ∈ m such that µi = px#ζi, νi = py#ζi,

that is, µi = δxi and νi =
y+i −xi
y+i −y

−
i

δy−i +
xi−y−i
y+i −y

−
i

δy+i . Let µ := ⊗iµi, ν := ⊗iνi
and ζ := ⊗iζi. Note that the martingale measure ζ ∈ P(R2d) has µ, ν
as its d-dimensional marginals. Now we want to prove that there exists
M > 0 such that χ ≤M on J for all χ ∈ Λ, where J = conv(supp ν) is
the convex hull of the support of ν. Notice that J is a closed rectangle
in Rd and supp ν is the set of its vertices, consisting of 2d points.

Suppose there is a ∈ I (where I = int J) and C > 0 such that
χ(a) = 0, χ ≥ 0 and

∫
χd(ν − µ) ≤ C for every χ ∈ Λ. First, consider

the case a = x, where x = (x1, ..., xd). Then just as in Step 1, it is then
trivial that there is a constant M > 0 such that χ ≤M on supp ν. Then
by convexity of χ we get χ ≤ M on J for every χ ∈ Λ, proving the
proposition in this simple case. Next if x 6= a = (a1, ..., ad), recall that
in Step 1 we found µ̃i, ν̃i ∈ P(R) such that µi ≤c µ̃i ≤c ν̃i ≤c νi and a
constant θi > 0 such that the measure ηi := θi ζai→(y−i ,y

+
i ) satisfies ηi ≤

π̃i for some π̃i ∈ MT(µ̃i, ν̃i). Set µ̃⊗ := ⊗iµ̃i, ν̃⊗ := ⊗iν̃i and η⊗ := ⊗iηi.
Then observe that

∫
χd(ν̃⊗−µ̃⊗) ≤ C implies

∫
χd(py#η

⊗−px#η⊗) ≤ C.

Since supp(px#η
⊗) = {a} and supp(py#η

⊗) = supp ν, we are reduced to
the previous case and the local uniform bound follows.

Now notice we can carry out Step 2 and 3 in this higher dimension
case exactly the same way, that is, we can find a countable rectangu-
lar martingale measures (say (ζn)n∈N) which covers I and satisfies the
appropriate chain condition. We saw in Step 2 that the boundedness
property of χ on each interval conv(supp ζn) can propagate along such
a chain, and the argument works the same way in higher dimension,
simply observing that the intersecting intervals Ky−1 +ε, y+

1 −εJ ∩ Ky−2 +
ε, y+

2 − εJ 6= ∅ in Step 2 are now replaced by intersecting chain of rect-
angles. Moreover if some marginal measures νi assign positive mass on
the boundary of Ii, then observe that the rectangles can cover up to
such boundaries so that we get the desired boundedness of all χ ∈ Λ
up to the boundary. This completes the proof of the local boundedness.

Step 5. It remains to prove the convergence property, and it is a
direct consequence of the local bound and an application of Arzelà-
Ascoli theorem, as follows: we have shown that every χ ∈ Λ is uniformly
bounded on any compact subset of J , so with convexity of χ and χ(a) =
0, χ ≥ 0 we deduce that the derivative of every χ ∈ Λ is also uniformly
bounded on any compact subset of I. Hence by Arzelà-Ascoli theorem
we deduce that for any sequence {χn} in Λ and any compact set K
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in I, there exists a subsequence of {χn} that converges uniformly on
K. Now by increasing K to I and using diagonal argument, we can
find a further subsequence of {χn} that converges pointwise in I, and
moreover, the convergence is uniform on every compact subset of I.

We can deal with the convergence on J \ I the same way and let
us explain in dimension 2 to avoid notational difficulty. Suppose, for
example, J1 = [a1, b1[, J2 = [a2, b2[, and J = J1×J2. First of all, at the
corner point (a1, a2) the sequence {χn} is bounded, so we can choose a
subsequence which converges at (a1, a2). Next, on any compact interval
in the open line {(x, a2) | a1 < x < b1} the sequence {χn} is also uni-
formly bounded, so by Arzelà-Ascoli theorem with diagonal selection
again we can find a further subsequence which converges everywhere on
{(x, a2) | a1 < x < b1}. Finally, we can find a further subsequence which
converges on {(a1, y) | a2 < y < b2}, and hence the sequence converges
everywhere on J . This completes the proof of Proposition A.1. �
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properties and the Bachelier-drawdown equation. Ann. Probab., Volume 40,
Number 1 (2012) 372–400.

[14] T. Champion and L. De Pascale. The Monge problem for strictly convex norms
in Rd. Journal of the European Mathematical Society., 12(6) (2010) 1355–1369.

[15] T. Champion and L. De Pascale. The Monge problem in Rd. Duke Mathemat-
ical Journal., Volume 157, Number 3 (2011) 551–572.

[16] V. Chernozhukov, I. Fernandez-Val and A. Galichon. Quantile and Probability
Curves without Crossing. Econometrica 78(3), pp. 1093–1125 (2010).

[17] V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge-Kantorovich
depth, quantiles, ranks and signs. The Annals of Statistics, 2017, Vol. 45, No.
1, 223–256.

[18] V. Chernozhukov, A. Galichon, M. Henry, and B. Pass. Identification of hedo-
nic equilibrium and nonseperable simultaneous equations. J. Political Econ.,
Volume 129, Number 3 (2021).

[19] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger. A Riemann-
ian interpolation inequality á la Borell, Brascamp and Lieb. Invent. Math., 146,
(2), (2001), 219–257.

[20] D. Cordero-Erausquin, R. J. McCann, and M. Schmuckenschläger. Prékopa-
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[47] J. Ob lój. The Skorokhod embedding problem and its offspring. Probability Sur-
veys, 1 (2004) 321–392.
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