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Abstract: Densities of particles on Rn which interact pairwise through an attractive-
repulsive power-law potential Wα,β(x) = |x |α/α − |x |β/β have often been used to
explain patterns produced by biological and physical systems. In the mildly repulsive
regime α > β ≥ 2 with n ≥ 2, we show there exists a decreasing homeomorphism
α�n from [2, 4] to itself such that: distributing the particles uniformly over the vertices
of a regular unit diameter n-simplex minimizes the potential energy if and only if α ≥
α�n (β). Moreover this minimum is uniquely attained up to rigid motions when α >

α�n (β). We estimate α�n (β) above and below, and identify its limit as the dimension
grows large. These results are derived from a new northeast comparison principle in
the space of exponents. At the endpoint (α, β) = (4, 2) of this transition curve, we
characterize all minimizers by showing they lie on a sphere and share all first and
second moments with the spherical shell. Suitably modified versions of these statements
are also established (i) for Wα,β and corresponding energies in the case where n = 1,
and (ii) for the attractive-repulsive potentials Dα(x) = |x |α(α log |x | − 1) that arise in
the limit β ↗ α.

1. Introduction

Particles interacting through long-range attraction and short-range repulsion given by
differences of power-laws have been used to model a range of physical [22,27] and
biological [5,25,33] systems, to predict or explain many of the patterns they display
[1,4,26,37], and to select mesh points for numerical integration [13–16]. For very few
values of the attractive and repulsive exponents (α, β) are the energy minimizing config-
urations of particles explicitly known; see however [6,9,11,12,17–19,21,30]. Here we
complement these results which — apart from [30] — concern β < 2, by showing that
for a region containing the intersection of the quadrant (α, β) ∈ [4,∞)×[2,∞)\{(4, 2)}
with the halfspace α > β, theminimizer consists precisely of those configurations which
equidistribute their particles over the vertices of an appropriately sized simplex, i.e. an
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equilateral triangle in two dimensions and a regular tetrahedron in three. We are able to
give a detailed description the region in question, and explain precisely how uniqueness
of these minimizers fails at its corner (α, β) = (4, 2).

Let us recall the setting and notation from our companion work [17]: The self-
interaction energy of a collection of particles with mass distribution dμ(x) ≥ 0 on Rn

is given by

EW (μ) = 1

2

∫∫
Rn×Rn

W (x − y)dμ(x)dμ(y), (1.1)

assuming the particles interact with each other through a pair potential W (x). Normal-
izing the distribution to have unit mass ensures that μ belongs to the space P(Rn) of
Borel probability measures on Rn .

Our goal is to identify global energy minimizers of EW (μ) on P(Rn), for power-law
potentials W = Wα,β where

Wα(x) := |x |α/α and (1.2)

Wα,β(x) := Wα(x) − Wβ(x) α > β > −n, (1.3)

with the appropriate convention if α = 0 or β = 0 [3]. In this paper we focus exclusively
on the mildly repulsive regime β ≥ 2 of [8], and its frontier β = 2. The latter is called
the centrifugal line in [30], since, at least on R2, the potential −W2 induces the outward
force which particles rotating uniformly around their common center of mass seem to
experience in a corotating reference frame; see e.g. [32]. On this frontier the energy also
acts as a Lyapunov function of the rescaled dynamics of the purely attractive Patlak-
Keller-Segel [25,33] model in self-similar variables around the time of blow-up [35].
On the segment (α, β) ∈ (2, 4) × {2}, our companion paper shows the minimizer is
uniquely given (up to translations) by a spherical shell — i.e. the uniform probability
measure on a spherical hypersurface — at least if n ≥ 2.

For α ≥ 4 and α > β ≥ 2 but (α, β) �= (4, 2), the present work shows that the
minimizer is uniquely given (apart from rotations and translations) by themeasure ν = ν1
which equidistributes its mass over the vertices of a regular, unit diameter, n-simplex,
defined below, i.e. an equilateral triangle if n = 2 and a regular tetrahedron if n = 3.
These results answer a question of Sun, Uminsky andBertozzi, by showing that the linear
stability of selfsimilar blow-up which they found for the aggregation dynamics on the
boundary of these two complementary regimes can be improved to a nonlinear stability
result. This improvement is explained in [17]; for spherically symmetric perturbations of
the spherical shell, such an improvement was already found by Balagué et al [2], while
asymptotic stability of measures on the simplex vertices was addressed by Simione
[34]. On the other hand, at the threshold exponent separating these two regimes, we will
show that although all centered convex combinations of the configurations mentioned
above remain mimimizers, there are many additional minimizers as well: indeed for
(α, β) = (4, 2) the centered minimizers consist precisely of all measures supported on
the minimizing spherical shell which share its moments up to order 2. When n ≥ 2, this
case is distinguished from α �= 4 by the fact that the attractor formed by global energy
minimizers becomes infinite-dimensional.

In themildly repulsive regionα > β ≥ 2, two of us recently showed the existence of a
finite thresholdα�n (β) < ∞ abovewhich the energy is uniquelyminimized by ν1 and its
rotates and translates [30]. In the current manuscript, we estimate α�n (β) ≤ max{β, 4}
concretely, showing equality holds when β = 2 ≤ n and finding the high dimensional
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Fig. 1. Convex hulls of supports of sample minimizers of EW4,2 in P0(R3). Each of these four minimizers is

inscribed in the sphere of radius
√
3/8 and has mass uniformly distributed over the set of extreme points of

the convex hull of its support. Moreover, rotates and convex combinations of any of these minimizers are also
minimizers. This implies that general minimizers of EW4,2 need not have any rotational symmetries

limiting threshold explicitly in the broader rangeβ > 2.We also show it is impossible for
ν1 tominimize EWα,β for anyα < α�n (β). Further results concerningα�n are established
in § 4 below and summarized in Theorem 1.5 and Remark 1.6.

To describe our conclusions, it will be convenient to recall the following class of sets
and measures which were the main object of study in [29,30]. We say that a set K ⊆ Rn

is called a regular k-simplex if it is the convex hull of k + 1 points {x0, x1, ..., xk} in Rn

satisfying |xi−x j | = d for some d > 0 and all 0 ≤ i < j ≤ k. The points {x0, x1, ..., xk}
are called vertices of the simplex. In particular, it is called a unit k-simplex if d = 1. We
also define the following set of measures:

P�n := {ν ∈ P(Rn) | ν is uniformly distributed over

the vertices of a unit n-simplex.} (1.4)

In particular P�1 = { 12 (δa + δa+1) | a ∈ R}. Let P0
�n = P�n ∩ P0(Rn) where P0(Rn)

denotes the centered probability measures on Rn — meaning those having finite first
moments and satisfying ∫

Rn
x dμ(x) = 0. (1.5)

We can now present our results. Let Id denote the n × n identity matrix.

Theorem 1.1 (Characterizing energy minimizers at (α, β) = (4, 2)). A measure μ ∈
P0(Rn) minimizes EW4,2 in (1.1) if and only if μ is concentrated on the centered sphere

of radius
√

n
2n+2 and has

∫
x ⊗ x dμ(x) =

(∫
xi x j dμ(x)

)
1≤i, j≤n

= 1

2n + 2
Id. (1.6)

Notice, if n = 1, δ−1/2+δ1/2
2 ∈ P�1 is the only minimizer inP0(R). For n = 3, several

inequivalent minimizers are illustrated in Fig. 1.
Now for each α > β, let

Aα,β = {(α′, β ′) ∈ R2 | α′ > β ′, α′ ≥ α, β ′ ≥ β, (α′, β ′) �= (α, β)}
denote the region of parameters lying north, east, or northeast of (α, β). The following
theorem allows us to extend an energy comparison involving a unit simplex from a single
point (α, β) in parameter space to the entire northeast region Aα,β which lies above and
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to its right. As we learned from the referees, when n = 2 and the interaction energy
(1.1) is equipped with the one-parameter family of anisotropic potentials W̃α(x) :=
− log(|x |)+α

x21
|x |2 , an analogous comparison principle was formulated independently by

Carrillo et al. [10], who used it to show that the known unique minimizer of EW̃1
also

uniquely minimizes EW̃α
for each α ≥ 1. In effect, the theorem which follows provides

two-parameter monotonicity results for power-law potentials analogous to their one-
parameter result for anisotropic potentials.

Theorem 1.2 (Northeast comparison of simplex energies and potentials). Let α > β >

0. If ν ∈ P�n minimizes EWα,β on P(Rn), then for (α′, β ′) ∈ Aα,β ,

P�n = argmin
P(Rn)

EWα′,β′ and sptν = argmin
Rn

(ν ∗ Wα′,β ′). (1.7)

Remark 1.3. (One dimension) If n = 1, our companion paper [17] shows P�1 uniquely
minimizes EWα,2 for all α ≥ 3. Kang, Kim, Lim and Seo [23, Theorem 2] on the other
hand showed P�1 is not a d∞-local minimizer, hence not a global minimizer, in the
range β = 2 < α < 3.

Set

4∗ :=
{
3 if n = 1
4 otherwise. (1.8)

Notice Theorems 1.1, 1.2 and Remark 1.3 imply the following corollary; see also Fig. 2.

Corollary 1.4 (Simplices minimize for α ≥ max{4∗, β}). For each (α, β) ∈ A4∗,2,P�n

uniquely minimizes EWα,β on P(Rn).

Our theorems, and in particular Theorem 1.2, allow us to infer quantitative results
about the structure of threshold functionα�n (β)which twoof us defined implicitly in [30,
Corollary 1.4]. For any given β ≥ 2, this threshold function describes the critical value
α�n (β) such that, for all α > α�n (β), EWα,β is uniquely minimized by the unit simplices
P�n . Prior to the present work and its companion paper [17], nothing was known of the
behaviour of α�n , save for its abstract existence as a function from [2,∞) to [2,∞) and
the lower bound α�n (2) ≥ 4 provided by [30, Remark 1.5]. Our techniques now yield
following much more precise statement, which implies continuity and monotonicity
properties of the threshold function, and shows that if α ∈ (β, α�n (β)), then EWα,β is
not minimized by any unit simplex:

Theorem 1.5 (Transition threshold). For each β ≥ 2 there exists α�n (β) ∈ [β,∞) such
that

P�n = argmin
P(Rn)

EWα,β if α > α�n (β), (1.9)

∅ = P�n ∩ argmin
P(Rn)

EWα,β if β < α < α�n (β). (1.10)

If α = α�n (β) and ν ∈ P�n , then at least one of the following two containments is
strict:

P�n � argmin
P(Rn)

EWα,β or sptν � argmin
Rn

(Wα,β ∗ ν). (1.11)

Moreover, α�n (2) = 4∗ from (1.8), and we have βn ∈ (2, 4∗) such that α�n (β) = β for
β ≥ βn, and α�n : [2, βn] −→ [βn, 4∗] is continuous and strictly decreasing.
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Fig. 2. Partial phase diagram of the mildly repulsive region α > β ≥ 2 for n ≥ 2: on the red segment
linking (2, 2) to (4, 2), energy is uniquely minimized by a spherical shell [17]. At (α, β) = (4, 2), the energy
is minimized by any convex combination of the configurations described in Fig. 1, but also admits other
minimizers characterized by Theorem 1.1. In the blue region, A4,2, Theorem 1.2 and the fact that the balanced
unit simplices P�n minimize EW4,2 combine to imply that the interaction energy is minimized precisely by
the elements of P�n

The quantity βn defined in Theorem 1.5 represents the smallest value of β such that
the graph of the threshold function α�n (β) intersects the diagonal boundary α = β of
the mildly repulsive regime in parameter space. Later, in Corollary 1.9, we will see that,
while Eα,β is trivial on this boundary, we can define a non-trivial family of interaction
kernels Dα which continuously extend the symmetrically rescaled family of energies
αβ

α−β
EWα,β to the line α = β. In the meantime, let us describe upper and lower bounds

on α�n (β), which will be made rigorous in subsections 4.1 and 4.2, respectively:

Remark 1.6 (Bounds on the Transition Threshold). By using the same family of rescaled
kernels αβ

α−β
Wα,β , Definition 4.1 specifies a function α∗∞ = α∗∞(β) which for n ≥ 2

becomes independent of dimension. Corollary 4.5 shows that α∗∞ bounds the threshold
function α�n from above in the sense that α∗∞(β) ≥ α�n (β) for all β ∈ [2,∞). Con-
versely, in subsection 4.2, we use violations of an Euler-Lagrange equation (3.3) for the
interaction energy (1.1) to define a pair of dimensionally-dependent lower bounds for
α�n . The first, α+

�n , defined in (4.5), arises from checking whether the Euler-Lagrange
equation for the unit simplex is violated anywhere in Rn . The second family of bounds,
α�n defined in (4.8), instead arise from looking for violations of the Euler-Lagrange
equation at a specific point in Rn which is chosen based on the dimension. As we show
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in Proposition 4.12,α+
�n is a sharper lower bound thanα�n , and the fact that it is sensitive

to Euler-Lagrange violations at each point in Rn means that, unlike α�n , its strength
does not depend on the choice of reference point. However, the theoretical appeal of
a sharper bound is muted by the apparent intractability of computing a bound which
requires us to check an inequality at each point of Rn . On the other hand, Definition 4.9
allows us to implicitly define α�n (β) by using a single equation (or equivalently inequal-
ity) involving α and β, and with an apt choice of reference point, this bound need not
be much weaker than the theoretically superior bound α+

�n . Moreover, Proposition 4.13
guarantees that even the weaker bound α�n is asymptotically sharp for large dimensions,
in the sense that for each β ≥ 2, we have limn→∞ α�n (β) = α∗∞(β). Even so, it would
be interesting to know the value of βn and of α�n (β) in the range β ∈ (2, βn) more
precisely. For example, might α�n ≡ α+

�n?

Remark 1.7 (Open global minimization problems). An interesting open problem is to de-
termine the structure of minimizers of EWα,β for 2 < β < α < α�n (β). Carrillo, Figalli,
and Patacchini showed the supports of such minimizers must have finite cardinality, and
placed a bound on this cardinality [8], later improved by Kang et al. [24], but little else
is known about this subregime. If n = 1 and β = 2, identifying the global minimizers
of EWα,2 along the segment (α, β) ∈ (2, 3) × {2} of the centrifugal line was highlighted
by us as another open problem in the original release of this manuscript. Shortly there-
after, the latter problem was elegantly solved by Frank [20], who used Fourier analysis,
convexity and the Euler-Lagrange equation (3.3) to show the (unique centered) solution
takes the form dμα(x) = C(R2 − x2)(1−α)/2

+ dx for certain explicit constants C, R > 0
depending on α ∈ (2, 3).

Remark 1.8 (Physically realistic potentials). The mildly repulsive regime α > β ≥ 2
which we address may be unphysical in several respects: the potentials Wα,β(x) grow
rapidly as r = |x | → ∞ (meaning long range forces increase without bound), yet
remain bounded at r = 0, which permits a positive fraction of the particles to condense
on the same point. These may or may not be desirable features, depending on what
one is trying to model. It is perhaps worth pointing out the global energy minimizers
ν we identify for these potentials will remain d∞-local minimizers (see [17] and (4.1))
for any other potential W which agrees with Wα,β in a neighourhood of |x | = 0 and
of |x | = 1 when α > α�n (β) (or of x ∈ sptν − sptν more generally). This includes
potentials which need not be spherically symmetric, nor grow at infinity. On the other
hand, our techniques say nothing obvious about potentials with singularities at the origin
that prevent condensation onto points, such asWα,β with β < 2 or bond order potentials
more generally.

Finally, taking the limit β → α for the rescaled potential Wα,β = αβ
α−β

Wα,β (which
has minimum value −1), leads us to introduce the following new class of interaction
kernels,

Dα(x) := α2 ∂

∂α
Wα,β(x) = |x |α(α log |x | − 1), α ∈ R \ {0} (1.12)

which form another intriguing one-parameter family of attractive-repulsive potentials
uniquely minimized at |x | = 1. This family continuously extends the two-parameter
family of rescaled potentialsWα,β to the portion of the boundary of the mildly repulsive
regime which lies on the diagonal line α = β. This interpretation is supported by
the following corollary, which follows from the proof of Theorem 1.2 and relates the
minimizers of EWα,β to those of EDα :
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Corollary 1.9 (Relation to minimizers of limiting potential on the diagonal). If P�n

minimizes EWα,β for some α > β > 0, then P�n uniquely minimizes EDγ on P(Rn)

for all γ ≥ α. Conversely, if P�n minimizes EDβ for some β > 0, then P�n uniquely
minimizes EWα,β on P(Rn) for all α > β. Thus from Remark 1.6, P�n minimizes EDα

uniquely if α > βn, and fails to minimize EDα if 0 < α < βn.

In effect, the preceding corollary states that, if unit simplices minimize EWα,β for
some point (α, β) in the mildly repulsive regime, they also minimize EDγ for all γ ≥ α.

By the formal relation EDγ = d
dα

EWα,β

∣∣
α=γ

, this means that, as γ increases from α,

the interaction energy of the unit simplex decreases more quickly (or increases more
slowly) than that of any non-simplicial measure. A rigorous version of this heuristic
comparison argument is crucial to the proof of Theorem 1.2. On the other hand, this
corollary states that, when we consider the closure α ≥ β ≥ 2 of the mildly repulsive
regime in parameter space and interpret Wα,α := Dα, then the region on which P�n

minimizes Eα,β is a closed subregion. In other words, this provides us with a reasonable
way of extending the threshold function to the boundary α = β.

2. Classifying Minimizers at (α, β) = (4, 2)

Our first task is to adapt Lopes’ proof [28] of energetic convexity from densities to
measures in Lemma 2.2, extracting conditions for strict convexity; see [7] and [17] for
the analogous extension in the interval (α, β) ∈ (2, 4) × {2}, whose endpoint we now
analyze.

Definition 2.1 (Second moment tensor). The second moment tensor for μ ∈ P(Rn) is
the n × n matrix given by

I (μ) =
∫

x ⊗ x dμ(x) =
( ∫

xi x j dμ(x)

)
i, j∈{1,...,n}

. (2.1)

Lemma 2.2 (Moment criteria for strict convexity). For any μ0, μ1 ∈ P0(Rn) having
finite fourth moments, set a(t) := EW4(μt ) where μt := (1 − t)μ0 + tμ1. Then a(t) is
convex, and depends affinely on t ∈ [0, 1] if and only if I (μ0) = I (μ1).

Proof. Fixμ0, μ1 ∈ P0(Rn)with fourth moments. Since EW4(μ) is a quadratic function
of μ, we see a′′(t) = 2EW4(μ0 − μ1). Thus convexity and affinity of a(t) on t ∈ [0, 1]
depend on the sign of

8EW4(μ0 − μ1) =
∫∫

Rn×Rn
|x − y|4d(μ0 − μ1)(x)d(μ0 − μ1)(y).

Vanishing of the zeroth and first moments of η := μ0 − μ1 allows us to express EW4(η)

as the following sum of squares involving the second moment tensors I (η) := I (μ0) −
I (μ1) from (2.1)

8EW4(η) =
∫∫

Rn×Rn
[4(x · y)2 + 2|x |2|y|2]dη(x)dη(y)

= 4Tr(I (η)2) + 2(Tr I (η))2.

Thus EW4(η) ≥ 0 with equality if and only if I (μ0) = I (μ1), as desired. ��
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Lemma 2.3 (Secondmoments for measures on centered spheres). Let Sr be the centered
sphere of radius r in Rn, and let μ ∈ P(Sr ). If I (μ) = λId for some λ > 0, then
I (μ) = I (σr ) where σr is the uniform probability on Sr .

Proof. If I (μ) = λId, any rotation Rμ of μ has the same second moment tensor
I (Rμ) = I (μ). Now if we uniformize μ by averaging over its rotations, the result-
ing measure σr will have the same second moment tensor as μ due to the linearity
of I . ��

It is plausible that the following lemma is known, but lacking a reference we provide
a proof for the sake of clarity and completeness.

Lemma 2.4 (Minimizing moments under moment constraints). Let 0 < p < q < ∞,
C > 0 and μ0 ∈ P(Rn). Then

μ0 ∈ argmin

{∫
|x |qdμ(x)

∣∣∣∣ μ ∈ P(Rn),

∫
|x |pdμ(x) = C

}

if and only if μ0 is concentrated on the centered sphere of radius C1/p.

Proof. Letm(x) = |x |be themodulusmap for x ∈ Rn , and letη := m#(μ) ∈ P([0,∞))

be the push-forward of μ ∈ P(Rn) by the map m. Then
∫
Rn |x |pdμ(x) = ∫ ∞

0 r pdη(r)
for any p > 0. Hence from now on we assume η ∈ P([0,∞)) and

∫
r pdη(r) = C .

Recall Jensen’s inequality, which states that if f : R → R is convex and X is a
real-valued random variable with average value E[X ], then E[ f (X)] ≥ f (E[X ]), and
equality holds if and only if f is linear on the interval [inf X, sup X ]. With f (r) =
rq/p, Jensen’s inequality yields

∫
rqdη(x) ≥

(∫
r pdη(x)

)q/p

= Cq/p, and moreover

equality holds if and only if η is supported at a point in [0,∞), since f is strictly convex
on [0,∞). This proves the lemma. ��
Proof of Theorem 1.1. Define

F(μ) = 1

4

∫∫
|x − y|4dμ(x)dμ(y), G(μ) = 1

2

∫∫
|x − y|2dμ(x)dμ(y)

so that 2E = F − G. Then for μ ∈ P0(Rn),

G(μ) =
∫

|x |2dμ(x) = Tr I (μ)

is no longer quadratic, but depends linearly on μ instead. Applying the calculation from
the proof of Lemma 2.2, modified slightly to account for the fact that

∫
dμ = 1 whereas∫

dη = 0, we get:

F(μ) = 1

2

∫
|x |4dμ(x) +

1

2
(Tr I (μ))2 + Tr(I (μ)2).

Thus the energyEW4,2 is convex, and byLemma2.2 itsminimizersmust all share the same
second moment tensor. Convexity also implies EW4,2 admits a spherically symmetric
minimizer. This yields that this common second moment tensor must be λId for some
λ > 0 to be determined. This leads us to define

Aλ = {μ ∈ P0(Rn) | I (μ) = λId}.
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For the correct choice of λ, Aλ contains all minimizers of (1.1), and moreover by the
above formulas for F and G, for every μ ∈ Aλ we have

2E(μ) = 1

2

∫
|x |4dμ(x) +

1

2
n2λ2 + nλ2 − nλ. (2.2)

This leads us to consider minimizing the fourth moment over Aλ. Set

Bλ = {μ ∈ P0(Rn) | Tr I (μ) = nλ}.
Notice Aλ ⊆ Bλ. Now Lemma 2.4 asserts that μ minimizes

∫ |x |4dμ(x) over Bλ if and
only if μ is concentrated on the centered sphere of radius r := √

nλ. But observe that
σr , the uniform probability on the sphere of radius r , also belongs to Aλ. This yields
that the set of minimizers X ⊆ P0(Rn) for (1.1) is precisely the following:

X := {μ ∈ P0(Rn) ∩ P(S√
nλ) | I (μ) = λId}

= {μ ∈ P0(Rn) ∩ P(S√
nλ) | I (μ) = cId for some c > 0} (2.3)

where Sr is the centered sphere of radius r in Rn , and the second equality is due to
Lemma 2.3. Notice X is convex since I is linear in μ.

Finally let us determine the optimal λ. By (2.2), 2E(μ) = n2λ2 + nλ2 − nλ for any

μ ∈ X , and dE
dλ

= 0 gives λ = 1
2n+2 , hence r = √

nλ =
√

n
2n+2 as claimed. ��

Example 2.5 (Infinite-dimensional attractor at transition threshold). If (α, β) = (4, 2),

then the spherical shell σr of radius r :=
√

n
2n+2 is a minimizer. For others, let {ei } be the

standard basis of Rn . Then the probability 1
2n

∑n
i=1(δrei + δ−rei ) clearly belongs to the

set X ⊆ P0(Rn) of minimizers from (2.3), which can be also seen by Lemma 2.3. And
any rotation and convex combination of these is a minimizer due to the convexity of X ,
which shows the set of minimizers is infinite dimensional. In particular, the minimizers
do not need to coincide with each other even up to rotation and translation. The uniform
measure on the vertices of the regular simplex inscribed in Sr is also a minimizer, by
the following standard observation.

Remark 2.6 (Second moments for the uniform measure on the vertices of a regular
simplex). Let νd ∈ P0(Rn) denote the uniform measure on the n +1 vertices of a regular
simplex with center of mass at the origin and diameter d. Then I (νd) = d2

2n+2 Id.

Proof. Let1 = (1, 1, . . . , 1) ∈ Rn+1. The standard simplex is�n := {x ∈ [0,∞)n+1|1·
x = 1}. Its vertices coincide with the standard basis vectors e0, . . . , en for Rn+1. Note
that its diameter is

√
2. We compute the second moments I (ν) of the uniform measure

ν = 1
n+1

∑n
i=0 δei over these vertices, and its translation Tλν = 1

n+1

∑n
i=0 δei−λ1 along

the principal diagonal 1 for each λ ∈ R:

I jk(Tλν) = 1

n + 1

n∑
i=0

(ei − λ1) j (ei − λ1)k

= 1

n + 1
(Id jk − 2λ + (n + 1)λ2),

i.e. I (Tλν) = 1
n+1 Id +λ(λ− 2

n+1 )1⊗1. Note that the choice λ = 1
n+1 makes ν√

2 = Tλν

centered at the origin and lie in the subspace 1⊥, and since I (Tλν) v = 1
n+1v for any
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v ∈ 1⊥, we have vi · I (Tλν) v j = 1
n+1 Idi j for any orthonormal basis {vi } of 1⊥, as

desired. For general diameter d we multiply (d/
√
2)2. ��

Remark 2.7 (Concerning d∞-local energy minimizers). For 2 < β < α or 2β = 4 <

α, two of us showed the measure ν1 of unit diameter in Remark 2.6 minimizes the
energy uniquely (up to rotations and translations) d∞-locally [30]; see also Simione
[34]. Example 2.5 shows that for n ≥ 2 the uniqueness part of this statement no longer
holds true at the endpoint (β, α) = (2, 4) of the latter regime, since 1

2 (ν1 + Rθ ν1) is also
minimizing, and lies as d∞-close to ν1 as we like when θ is sufficiently small.

3. Identifying Mildly Repulsive Minimizers for α ≥ 4∗

For αβ > 0, let wα and wα,β be defined on (0,∞) by

wα(r) = rα

α
, wα,β(r) = rα

α
− rβ

β
,

so that Wα,β(x) = wα,β(|x |). If α �= β, the rescaled potential

wα,β(r) = wα,β(r)

−wα,β(1)
= βrα − αrβ

α − β
= wβ,α(r) (3.1)

then satisfies wα,β(r) ≥ −1 on r ≥ 0 with equality if and only if r = 1. We note that,
while the present work is concerned only with the case where α > β > 0, the rescaled
potential wα,β continues to satisfy wα,β ≥ 1 with equality if and only if r = 1 on the
broader regime αβ > 0. If instead αβ < 0, then wα,β is uniquely maximized at r = 1.
Define Wα,β(x) = wα,β(|x |). Obviously EWα,β and EWα,β

share the same minimizers
on P(Rn) as long as α > β. The crux of the proof of Theorem 1.2 is the following
monotonicity illustrated in Fig. 3:

Lemma 3.1 (Rescaled potential increaseswith either exponent). For eachα �= 0,β �= α,
r > 0, we have α ∂

∂β
wα,β(r) ≥ 0 with equality holding if and only if r = 1.

Proof. Direct computation yields

α
∂

∂β
wα,β(r) = α2rβ

(α − β)2
(rα−β − 1 − log rα−β).

From this, the lemma follows from the fact that the function t �→ t − 1 − log t ≥ 0 for
t > 0 with equality holding only if t = 1. ��

Proof of Theorem 1.2. Assume α > β > 0 and P�n minimizes EWα,β . It is enough to
proveP�n uniquely minimizes both EWα+ε,β and EWα,β+ε onP(Rn) for all ε ∈ (0, α−β),
and that the support of ν ∈ P�n uniquely minimizes both ν ∗Wα+ε,β and ν ∗Wα,β+ε on
Rn . Let ρ(x, y) = |x− y|. Forμ ∈ P(Rn), observe the push-forward μ̃ := ρ#(μ⊗μ) ∈
P([0,∞)) via the map ρ satisfies, since W (x) = w(|x |),

EWα,β
(μ) = 1

2

∫ ∞

0
wα,β(r)dμ̃(r). (3.2)
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Fig. 3. Graphs of wα,β(r) for β = 2.5 and α = 3, 5, 7 illustrating the results of Lemma 3.1. In particular,
although all three graphs agree for r ∈ {0, 1}, we see that wα,β(r) is a strictly increasing function of α for
each r ∈ (0, 1) ∪ (1, ∞). Note that the symmetry wα,β = wβ,α from (3.1) ensures that the monotonicity in
β proven in Lemma 3.1 and the monotonicity in α shown in this figure are equivalent

Let ν ∈ P�n . By assumption
∫

wα,β(r)dμ̃(r) ≥ ∫
wα,β(r)d ν̃(r). Since spt(ν̃) = {0, 1}

and wα,β(r) is constant in α > β > 0 at r = 0 and 1,

∫
wα,β(r)d ν̃(r) =

∫
wα+ε,β(r)d ν̃(r) =

∫
wα,β+ε(r)d ν̃(r)

for all 0 < ε < α − β. On the other hand, by Lemma 3.1 (and the symmetry of w in
α, β), ε > 0 implies

∫
wα,β(r)dμ̃(r) ≤

∫
wα+ε,β(r)dμ̃(r),

∫
wα,β(r)dμ̃(r) ≤

∫
wα,β+ε(r)dμ̃(r)

with equality holding only if spt(μ̃) ⊆ {0, 1}, i.e. only if μ is concentrated on the set
of vertices of a unit simplex. Hence, if μ minimizes EWα+ε,β

or EWα,β+ε
then it must

be concentrated on the vertices of a unit simplex. Thus, we use the isometry described
in [30, Remark 1.2] to write μ = ∑n+1

i=1 miδ2−1/2ei ∈ P(Rn). In particular, if we let
m = (m1, ...,mn+1) be the vector of masses and if we, without loss of generality, define
an (n + 1) × (n + 1) matrix A by

Ai j = nwα+ε,β

(
1√
2

)[
1 − Idi j

n

]
,
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then we may write

EWα+ε,β
(μ) = mT Am = nwα+ε,β

(
1√
2

)
mT Am,

where we define Ai j := 1
n (1 − Idi j ). Thus, noting that each of the rows and columns

of A sums to 1, and noting that A
2
is a positive matrix, the Perron-Frobenius theorem

implies that A has 1 as an eigenvalue with multiplicity 1, and that all other eigenvalues of
A have absolute value less than 1. Since m := 1

n+1 (1, ..., 1) is an eigenvector of A with
eigenvalue 1, the spectral theorem implies thatm maximizes the quantitymT Am among
all vectors in Rn+1 with entries summing to 1. In turn, since the constant wα+ε,β( 1√

2
) is

negative, we conclude that, in order to minimize EWα+ε,β
, μ must uniformly distribute

its mass over the vertices of a unit simplex, i.e. μ ∈ P�n . This proves the first identity
(1.7).

Observe that the Euler-Lagrange equation from e.g. [17] asserts

sptν ⊆ argmin(ν ∗ Wα,β). (3.3)

Since the vertices of a unit simplex, sptν, is characterized as the maximal set of points
at distance one from each other, Lemma 3.1 shows

ν ∗ Wα,β ≤ ν ∗ Wα+ε,β and ν ∗ Wα,β ≤ ν ∗ Wα,β+ε

with equalities holding precisely on sptν. This implies the second identity (1.7) to es-
tablish Theorem 1.2. ��
Proof of Corollary 1.9. Lemma 3.1 shows wα,β(r) is a nondecreasing function of β ∈
(0, α), and strictly increasing unless r ∈ {0, 1}. Also limβ→α wα,β(r) = rα(α log r−1),
so limβ→α Wα,β(x) = Dα(x). As in the preceding proof, if P�n minimizes EWα,β ,
comparison shows it then minimizes EDα uniquely. Conversely if P�n it also minimizes
EDβ , then it also minimizes EWα,β uniquely for all α > β. ��
Proof of Corollary 1.4. Theorems 1.1–1.2 and Remarks 1.3 and 2.6 yield Corollary 1.4.

��

4. The Transition Threshold

In this section,we establish the existence of a transition thresholdα�n (β)which separates
the part of the mildly repulsive region β ≥ 2 on which equidistribution P�n over the
vertices of the unit simplex minimizes the energy EWα,β from the part on which it does
not. Above the threshold, these minimizers are unique up to rigid motions. We also
establish that this threshold lies in the range [α+

�n (β), α∗∞(β)] ⊆ [α�n (β), α∗∞(β)]
given by Definitions 4.1, 4.6 and 4.9, which collapses to the point {α∗∞(β)} in the high
dimensional limit (Proposition 4.13).

Proof of Theorem 1.5. For β ≥ 2, the existence of α�n (β) ∈ [β,∞] satisfying (1.9)
and (1.10) follow from Theorem 1.2; also α�n (β) < ∞ is asserted in [30]. The fact
that α�n (2) ≤ 4∗, existence of a minimal βn ∈ [2, 4∗] such that α�n (β) = β for
β > βn , and (nonstrict) monotonicity of α�n : [2, βn] −→ [βn, 4∗] are consequences
of Corollary 1.4. The centrifugal value α�n (2) = 4∗ follows from Theorem 1.1 and
Remark 1.3. We next establish that at least one of the containments (1.11) is strict by
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combining results from [30] with the strategy used to provide an analogous statement
for a related problem in [31].

For p ∈ [1,∞], recall that theKantorovich-Rubinstein-Wasserstein distancebetween
μ,μ′ ∈ P(Rn) is defined by

dp(μ,μ′) := inf
X∼μ,Y∼μ′ ‖X − Y‖L p , (4.1)

where the infimum is taken over arbitrary couplings of random vectors X and Y in
Rn whose laws are given by μ and μ′ respectively. The metrics dp are well-known to
metrize weak convergence of measures on compact subsets K ⊆ Rn unless p = ∞
[36]. Given such a compact set K ⊆ Rn and α > β ≥ 2, we first claim that if (α, β) =
limk→∞(α(k), β(k)) for a sequence α(k) > β(k) ≥ 2, then the functionals EWα(k),β(k)

�-converge to Eα,β on (P(K ), d2). Since the potentials {Wα(k),β(k)}k are uniformly
equicontinuous on K × K , this is easy to prove using the argument, e.g., from Lemma
3.2 of [31], so we do not give more details here. Now Proposition 1.1 of [17] ensures
the minimizers of EWα,β on P(Rn) exist and can all be translated to lie in a centered
ball of radius e1/β ; as k → ∞ it follows from this �-convergence that d2-accumulation
points of minimizers of Eα(k),β(k) therefore minimize Eα,β on P(Rn). Taking β(k) = β

and α(k) ↘ α�n (β) then shows that the (nonstrict) first containment of (1.11) is a
consequence of (1.9). When α�n (β) = β, strict containment becomes trivial. We may
therefore assume α�n (β) =: α > β, and let β(k) = β and α(k) ↗ α. We also assume
β > 2 because for β = 2 ≤ n strict containment follows from Theorem 1.1, while for
(β, n) = (2, 1) it is easy to check sptν = {− 1

2 ,
1
2 } � [− 1

2 ,
1
2 ] = argmin(W3,2 ∗ ν).

Since there exist minimizers μk of Eα(k),β on P(Rn) whose support lies in the centered
ball of radius e1/β , weak compactness of the probability measures on this ball yields
a subsequential limit d2(μk, μ∞) → 0 (the subsequence having been relabelled μk);

�-convergence then ensures μ∞ minimizes EWα,β on P
(
Be1/β (0)

)
, hence on P(Rn) by

[17, Proposition 2.1].
The second containment in (1.11) follows from the first and the Euler-Lagrange

equation described e.g. in Proposition 1.1 of [17]. To derive a contradiction, assume
neither containment in (1.11) is strict, so that μ∞ ∈ P�n and

sptμ∞ = argmin
Rn

Wα,β ∗ μ∞. (4.2)

Set sptμ∞ = {x0, . . . , xn} and 0 < R < 1/2. Since d2(μk, μ∞) → 0 and the Euler-
Lagrange equation applied toμk , and the uniform convergence on every ball ofWα(k),β ∗
μk to Wα,β ∗ μ∞ together with (4.2) yields

1 = μk[∪n
i=0BR(xi )], while μk[BR(xi )] ∈

(
1

n + 2
,
1

n

)

for k sufficiently large; c.f. Lemma 4.3 of [31] or Corollary 3.6 of [30]. Setting

μ′
k :=

n∑
i=0

μk[BR(xi )]δxi (4.3)

ensures d∞(μk, μ
′
k) < R. On the other hand, if α(k) > β∗ := 1

3 (α + 2β), Corollary 4.3
of [30] provides r = r(β, β∗, n) such that μ′

k (and its rotates and translates) uniquely
minimize EWα(k),β on a d∞-ball of radius r around μ′

k . But μk was chosen to minimize
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EWα(k),β globally on P(Rn). Taking R < r and k correspondingly large therefore forces
μk to be a rotate or translate of μ′

k . From e.g. the Perron-Frobenius theorem, μk then
assigns equal mass to each point in sptμk , hence μk ∈ P�n . Since α(k) < α�n (β) by
construction, (1.10) produces the desired contradiction μk �∈ P�n , to establish that at
least one of the containments in (1.11) is strict. From this, notice the monotonicity of
α�n : [2, βn] −→ [βn, 4∗] must be strict in view of (1.7), and implies βn ∈ (2, 4∗).

It remains to deduce continuity of α�n at each β ∈ [2, βn]. Set
α�n (β±) := lim

ε↓0 α�n (β ± ε).

Ifα ∈ (α�n (β), α�n (β−)) for someβ ∈ (2, βn], then choosingμk tominimizeEWα,β−1/k

on P(Rn), after translation into a centered ball of radius e1/(β−1) we can extract a sub-
sequential d2-limit μ∞ of μk . Notice μk �∈ P�n , while �-convergence implies μ∞
minimizes Eα,β hence μ∞ ∈ P�n by Theorem 1.2. But then as above, this contradicts
the d∞-unique local minimality of μ′

k from (4.3) for R sufficiently small and k corre-
spondingly large. On the other hand, if α ∈ (α�n (β+), α�n (β)) for some β ∈ [2, βn],
then choosing μk to minimize EWα,β+1/k on P(Rn), we can extract a subsequential d2-
limit μ∞ of μk . This time μk ∈ P�n , while �-convergence and α < α�n (β) imply
μ∞ �∈ P�n , contradicting the fact that P�n is d2-closed. We conclude the desired con-
tinuity α�n (β) = α�n (β±), which also implies α�n (βn) = βn . ��

4.1. Threshold upper bound independent of dimension n ≥ 2. We now establish an
upper bound α∗∞(β) for the threshold α�n (β). Note that this upper bound and the quan-
tities β∗∞ and f ∗∞(β) defining it become independent of dimension as soon as n ≥ 2.
The asterisk on these quantities reminds us of their implicit dependence on min{n, 2},
however.

Definition 4.1 (Threshold upper bound). Set

β∗∞ := 4∗ − 2

log(4∗/2)
=

{
1

log(3/2) if n = 1,
2

log 2 if n ≥ 2.

For β ≥ 2, define α∗∞ = α∗∞(β) as the largest solution of

eα/β∗∞

α
= eβ/β∗∞

β
. (4.4)

Remark 4.2. (Number of solutions) For any given β ≥ 2 and n ∈ {1, 2}, there are at most

two solutions to equation (4.4), which follows from the fact that f ∗∞(t) := 1 − et/β
∗∞

t
is unimodal on (0,∞), i.e. has a unique global maximum and no local minima. In

particular, we see t2β∗∞e−t/β∗∞ d f ∗∞
dt = t − β∗∞ is positive on (0, β∗∞), zero at β∗∞, and

negative on (β∗∞,∞). Thus α∗∞(β) = β if and only if β ≥ β∗∞.

Remark 4.3. (Alternative interpretation) Recalling (3.1) and (1.12), set

w̄β,β(r) := lim
α→β

w̄α,β(r) = rβ(β log r − 1),

and let zα,β denote the positive zero of w̄α,β , where zα,β = ( α
β
)

1
α−β for α �= β and

zβ,β := e1/β . Notice that z4∗,2 = 3
2 , if n = 1, and z4∗,2 = √

2, if n ≥ 2. Hence, after
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some rearranging, we obtain β∗∞ from the equation zβ∗∞,β∗∞ = z4∗,2 and α∗∞ as the largest
solution of zα,β = z4∗,2, or rather wα,β(z4∗,2) = 0.

The following lemma (Fig. 4) and corollary demonstrate that α∗∞ is indeed an upper
bound for the threshold function:

Lemma 4.4 (Comparing pair potentials). Let 2 < β < α < 4∗. Then w̄4∗,2(r) ≤
w̄α,β(r) for all r ∈ [0, zα,β ] if and only if zα,β ≤ z4∗,2.

Proof. One direction is trivial, as if w̄4∗,2(r) ≤ w̄α,β(r) for all r ∈ [0, zα,β ], then in
particular w̄4∗,2(zα,β) ≤ w̄α,β(zα,β) = 0, hence zα,β ≤ z4∗,2. For the proof of the other
direction, we begin by defining

g(r) := w̄4∗,2(r) − w̄α,β(r) = 2r4
∗ − 4∗r2

4∗ − 2
− βrα − αrβ

α − β
.

We may divine the behaviour of g from its fifth derivative

g(5)(r) = αβrβ−5

α − β

[
−rα−β

4∏
i=1

(α − i) +
4∏

i=1

(β − i)

]

for r ∈ (0,∞). Written in this form, we see that g(5)(r) is the product of a positive
function of r and a monotone function of r , and hence has at most one sign change.
More precisely, g(3)(r) is either convex-concave (if α < 3), concave-convex (if β > 3),
or strictly convex (if β ≤ 3 ≤ α �= β) on (0,∞). Moreover, we may write

g(3)(r)=2 · 4∗(4∗ − 1)r4
∗−3+

αβ

α − β[
−(α − 1)(α − 2)rα−3 + (β − 1)(β − 2)rβ−3

]
.

Here, both the highest order term r4
∗−3 and the lowest order term rβ−3 have positive

coefficients, which implies that g(3) is positive outside a compact subinterval of (0,∞).
This, combined with the convex/concave structure of g(3), implies that g(3) can have at
most two zeros on (0,∞) and, in particular, may change signs at most twice — from
positive to negative to positive.

This implies either g′ is convex-concave-convex on (0,∞) or just convex. We may
assume g′ is convex-concave-convex as, if it is simply convex, an easier argument than
what follows will yield the desired conclusion. Notice that

g′(r) = 4∗ · 2
4∗ − 2

(r4
∗−1 − r) − αβ

α − β
(rα−1 − rβ−1)

is negative near zero and hence, the convex-concave-convexity implies g′ changes sign
at most thrice on (0,∞). Note g′(0) = g′(1) = 0 = g(0) = g(1). Since g′ is negative
near zero, we see that g′ must change from negative to positive somewhere in (0, 1),
implying the existence of a zero of g′ on this interval. Hence g′ has at most one zero on
(1,∞). But if there is no zero on (1,∞), then the shape of g′ and g(1) = g′(1) = 0
implies g′ > 0 hence g > 0 on (1,∞), yielding zα,β > z4∗,2, a contradiction. Hence
we deduce that, on (1,∞), g′ changes sign from negative to positive. With g(1) = 0,
this implies g also changes sign from negative to positive on (1,∞). Now since the
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Fig. 4. Comparison of w4,2 to w3.1,2.5 and w3.5,2.5 illustrates Lemma 4.4. Note that the unique positive root

zα,β of wα,β is ordered so that z3.5,2.5 = 1.4 < z4,2 = √
2 < z3.1,2.5 =

(
3.1
2.5

) 1
3.1−2.5 ≈ 1.431. On one

hand, the proof of the lemma implies that w3.1,2.5(z3.1,2.5) = 0 < w4,2(z3.1,2.5). Thus, by continuity, there
exists some ε > 0 such that w3.1,2.5(r) < w4,2(r) for all r ∈ (z3.1,2.5 − ε, z3.1,2.5] ≈ (0.7332, 1.415]. On
the other hand, the lemma implies that, since the graph of w3.5,2.5 intersects the x-axis at z3.5,2.5 <

√
2, the

inequality w3.5,2.5(z3.5,2.5) ≥ w4,2(z3.5,2.5) extends to all r ∈ (0, z3.5,2.5]

condition zα,β ≤ z4∗,2 clearly implies g(zα,β) ≤ 0, this allows us to conclude that g ≤ 0
on [1, zα,β ].

It remains to show g ≤ 0 on [0, 1]. Assume g is positive somewhere in (0, 1). Then
g′ would have to change signs (at least) twice on the interval (0, 1), from negative to
positive to negative. With g′(1) = 0 all three zeros of g′ are in (0, 1], thus no zero on
(1,∞), contradiction as before. This concludes the proof. ��

Corollary 4.5 (Threshold upper bound). If β ≥ 2 then α�n (β) ≤ α∗∞(β).

Proof. Recall P�n minimizes EW4∗,2 from Corollary 1.4. The fact from Lemma 4.4,
namely w̄4∗,2(r) ≤ w̄α∗∞,β(r) on r ∈ [0, zα∗∞,β ] with equality at r = 1, shows P�n

minimizes EWα∗∞,β
, since any minimizer of EWα∗∞,β

has diameter no greater than zα∗∞,β ,
by [23, Lemma 1]. ��

4.2. Threshold lower bound for each dimension. We now derive a dimension dependent
lower bound α+

�n for α�n from the Euler-Lagrange equation (3.3) for minimizers.

Definition 4.6 (Threshold lower bound). Let ν ∈ P�n . For each β ≥ 2, define α+
�n (β) ∈

[β,∞) to be

α+
�n (β) := inf{α > β | sptν ⊆ argmin

Rn
(Wα,β ∗ ν)}

= sup{α ∈ R | sptν �⊆ argmin
Rn

(Wα,β ∗ ν)}. (4.5)



Classifying Minimum Energy States for Interacting Particles

Proposition 4.7 (Threshold lower bound). Let ν ∈ P�n . If α > α+
�n (β) for some β ≥ 2,

then sptν = argmin
Rn

(Wα,β ∗ ν). In particular,

α+
�n (β) = inf{α > β | sptν = argmin

Rn
(Wα,β ∗ ν)}, (4.6)

and α+
�n ≤ α�n .

Proof. For any α > α+
�n (β), notice Lemma 3.1 yields sptν = argmin

Rn
(Wα,β ∗ ν), which

gives (4.6). The fact that α+
�n ≤ α�n is a direct consequence of the Euler-Lagrange

equation satisfied by a minimizer: i.e. if α ≥ α�n , so that ν ∈ P�n minimizes EWα,β ,
then ν satisfies (3.3) hence α ≥ α+

�n . ��
Although the value ofα+

�n (β) is not very explicit, it is possible to estimate it explicitly
from below by evaluating the potential Wα,β ∗ ν at points chosen judiciously to expose
potential violations of the Euler-Lagrange equation. The resulting estimates α�n ≤ α+

�n

provide weaker but explicit lower bounds for the threshold. This requires the following
family of functions and their unimodality:

Definition 4.8 (A family of unimodal functions). Define fn : (0,∞) → R by

fn(t) :=
{

2−1−2−t

t if n = 1
n−( 2n

n+1 )t/2−n( n−1
n+1 )t/2

t if n ≥ 2.
(4.7)

Using this family of functions, we define a new family of lower bounds:

Definition 4.9 (A weaker threshold lower bound). For β ≥ 2, define α�n (β) by

α�n (β) = max{α ≥ 2 | fn(α) = fn(β)}. (4.8)

In particular, the set over which we take the maximum in the previous definition has
at most two elements, as the following lemma shows:

Lemma 4.10 (Unimodality of fn). For any n ≥ 1, the function fn(t) is unimodal on
t ∈ (0,∞). Indeed, fn admits a unique global maximum β

n
:= argmax

t>0
fn(t) and no

other critical points.

Proof. We first treat the case n = 1 separately. Here, notice that f ′
1(t) has the same sign

as g1(t) := t2 f ′
1(t) = (t log 2 + 1)2−t − 2−1. Since g′

1(t) = −t2−t log2 2 is always
negative, and since g1(0) = 1

2 and limt→∞ g1(t) = − 1
2 , we conclude that f ′

1 switches
sign from positive to negative at its unique zero in (0,∞), and has no other sign changes.
We denote the unique zero of f ′

1 by β
1
.

The n ≥ 2 case proceeds in a similar manner. Here, we notice that

gn(t) := t2 f ′
n(t) = − t

2

[(
2n

n + 1

)t/2

log
2n

n + 1
+ n

(
n − 1

n + 1

)t/2

log
n − 1

n + 1

]

− n +

(
2n

n + 1

)t/2

+ n

(
n − 1

n + 1

)t/2

,
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Fig. 5. The mildly repulsive regime for, e.g., n = 2. In the red region to the left of the blue curve α = α�2 (β),

the simplex does notminimizeEWα,β
.Conversely, in the rightmost blue region, the simplex uniquelyminimizes

EWα,β
. In the intermediate region, it is not entirely known where the simplex minimizes EWα,β

, but the graph
of the threshold function α�2 must lie entirely in this region

and compute

g′
n(t) = − t

4

[(
2n

n + 1

)t/2

log2
2n

n + 1
+ n

(
n − 1

n + 1

)t/2

log2
n − 1

n + 1

]
.

Since g′
n(t) is negative everywhere, gn(0) = 1, and limt→∞ gn(t) = −∞, we may

apply an identical argument to the one employed in the n = 1 case to show the existence
of β

n
with all desired properties. ��

Remark 4.11 (Diagonal intersects bound). Notice α�n (β) > β if and only if β < β
n
.

That is, the graph of α�n intersects the line α = β at the point (β
n
, β

n
).

Proposition 4.12 (Estimating threshold lower bound). For β ≥ 2, the thresholds of
Definitions 4.9, 4.6 and Theorem 1.5 satisfy α�n (β) ≤ α+

�n (β) ≤ α�n (β).

Proof. In view of Proposition 4.7 we need only show α�n (β) ≤ α+
�n (β). We proceed

by relating the defining equations for α�n to the Euler-Lagrange equation for a unit
simplex ν ∈ P�n . As in the introduction, we denote the vertices of the unit n-simplex
by {x0, ...., xn}. We divide the proof into two cases, n = 1 and n ≥ 2. Notice that, in
either case, the inequality is trivial for any β for which α�n (β) = β, so we are free to
assume that α�n (β) > β.
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Fig. 6. The analogous graph for the n = 1 case. All coloured regions and graphs have the same meaning as
their counterparts in Fig. 5, although the scale of this graph differs from its higher dimensional counterparts,
due the fact that 4∗ = 3 when n = 1

If n = 1, notice that the Euler-Lagrange equation requires that

(Wα,β ∗ ν)(x0) ≤ (Wα,β ∗ ν)(0).

More explicitly, as ν = δx0+δx1
2 , this inequality reads 1

2

[
1
α

− 1
β

]
≤ 1

α2α − 1
β2β , or,

f1(α) = 2−1 − 2−α

α
≤ 2−1 − 2−β

β
= f1(β). (4.9)

By definition, α = α�1(β) saturates this inequality. Our assumption α�1(β) > β with
the unimodality of f1 from Lemma 4.10 ensure that for any γ ∈ (β, α�1(β)),

f1(γ ) > f1(β) = f1(α�1(β)).

This implies that the simplex ν violates the Euler-Lagrange equation for EWγ,β , and
hence that γ ≤ α+

�1(β). Of course, since this inequality holds for all γ ∈ (β, α�1(β)),

this proves that α�1(β) ≤ α+
�1(β) for any β ≥ 2.

Our proof proceeds analogously for n ≥ 2, with the key difference being that the
definition (4.7) of fn is derived from the inequality

(Wα,β ∗ ν)(x0) ≤ (Wα,β ∗ ν)(−x0),
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Fig. 7. Graphs of fn(t) for selected values of n. Our numerical experiments indicate that, for all t ∈ [2, 4],
fn(t) increases monotonically to f ∗∞(t) := 1 − 2t/2

t

which again is a necessary condition for the Euler-Lagrange equation to hold for ν. Since
the simplex geometry yields |x0|2 = n

2n+2 and |x0 + x1|2 = n−1
n+1 (c.f. Theorem 1.1 and

Remark 2.6), this inequality can be re-expressed as:

n

n + 1

(
1

α
− 1

β

)
≤ 1

n + 1

(( 2n
n+1

)α/2

α
−

( 2n
n+1

)β/2

β

)
+

n

n + 1

(( n−1
n+1

)α/2

α
−

( n−1
n+1

)β/2

β

)
,

or equivalently,

fn(α) = n − ( 2n
n+1

)α/2 − n
( n−1
n+1

)α/2

α
≤ n − ( 2n

n+1

)β/2 − n
( n−1
n+1

)β/2

β
= fn(β).

Since fn is still unimodal for n ≥ 2, the remainder of the proof proceeds in an identical
manner to the proof for n = 1 following (4.9), hence is omitted. ��

We summarize our findings for n = 2 and n = 1 in Figs. 5 and 6 respectively.
Notably, even this weaker lower bound tends to the upper bound α∗∞ as n → ∞:

Proposition 4.13 (Bounds converge in the high dimensional limit). For all β ≥ 2, we
have limn→∞ α�n (β) = α∗∞(β) (n �= 1).

Proof. For β ≥ 2, observe that the unimodal functions fn(β) of Lemma 4.10 converge
to the unimodal limit f ∗∞(β) of Remark 4.2:

lim
n→∞ fn(β) = lim

n→∞
n − ( 2n

n+1

)β/2 − n
( n−1
n+1

)β/2

β
= 1 − 2β/2

β
= f ∗∞(β) (n �= 1).
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Since α�n (β) and α∗∞(β) are defined as the largest α satisfying fn(α) = fn(β) and
f ∗∞(α) = f ∗∞(β) respectively, it follows that α�n (β) → α∗∞(β) as n → ∞. ��
Remark 4.14 (Monotonicity). Numerical experiments displayed in Fig. 7 suggest (4 −
t)(t−2)α�n (t) is a non-decreasing function ofn ≥ 2on t > 0; for t ≥ 2 its largen limit is
established in the previous proposition. To confirm the observedmonotonicity rigorously,
it would suffice to showunimodality of fn+1− fn on (0,∞) for all n ≥ 2. This is because,
for n ≥ 2, fn(t) has zeroes only at t = 2 and t = 4, and hence, assuming unimodality,
these are the only two zeroes of fn+1 − fn . Since limt→∞ ( fn+1(t) − fn(t)) = −∞,
this implies positivity of (4 − t)(t − 2)( fn+1(t) − fn(t)) away from t ∈ {2, 4}.
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