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Abstract

In various contexts, such as learning, social distancing behavior, and financial con-

tagion, economic agents’ influences are interdependent and can be represented as a

network. This paper investigates how a decision maker (DM) can design an optimal

intervention while addressing uncertainty in the network structure. The DM’s problem

is modeled as a zero-sum game against an adversarial player, referred to as “Nature,”

whose objective is to disrupt the DM’s goals by reconfiguring the network into its

most disadvantageous state. Using the principle of duality, we derive the DM’s unique

robust intervention strategy and identify the corresponding unique worst-case net-

work structure determined by Nature. This framework provides insights into robust

decision-making under network uncertainty, balancing the DM’s objectives with Na-

ture’s adversarial actions. Moreover, we explore the costs of robustness and highlight

the significance of higher-order uncertainties.
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1 Introduction

1.1 Overview

Central authorities must distribute limited resources across complex and uncertain networks,

where decisions are interconnected and dynamic. Network theory can assist in the analysis of

these systems, but the network structure is often only partially known, complicating decision-

making. Once resources are allocated, participants may engage in actions such as trading,

sharing, or forming collaborations, which can lead to unpredictable outcomes. Although re-

cent literature has focused on intervention in complex networks (e.g., Galeotti et al., 2020,

2024; Jeong and Shin, 2024; Parise and Ozdaglar, 2023; Sun et al., 2023), the role of un-

certainty has not been fully addressed. Understanding how uncertainty affects intervention

decisions is essential for improving the effectiveness and robustness of resource distribution

strategies.

In this paper, we address the challenge of designing robust intervention strategies in

uncertain networks, where the structure and inter-dependencies are only partially known.

Using a robust optimization framework, we model the problem as a zero-sum game between

a decision maker (DM) and an adversarial “Nature.” The DM seeks to allocate resources

effectively to guide network outcomes toward specific targets, while Nature embodies the

uncertainties in the network, manipulating its structure to maximize the DM’s objective

function in the least favorable way. By analyzing the worst-case scenarios that emerge under

this framework, we characterize the DM’s optimal intervention strategy, which accounts for

both the mean influence of the network and the risks introduced by uncertainty.

Consider the allocation of medical supplies during a pandemic or the injection of liquid-

ity during a financial crisis—both scenarios involve central authorities distributing limited

resources across interconnected and dynamic networks. During a pandemic, authorities must

allocate essential medical resources, such as vaccines, ventilators, or protective equipment, to

various regions with specific targets, such as vaccinating a set percentage of the population to

achieve herd immunity or ensuring that hospitals are adequately equipped to handle surges

in patients.1 Similarly, during a financial crisis, central banks and funding bodies provide liq-

uidity to commercial banks or allocate resources to institutions to achieve specific objectives,

such as stabilizing credit markets or encouraging innovation through research funding.2

1Cunningham (2021) discusses the logistical challenges faced by pharmacies during COVID-19 vaccine
distribution, illustrating how unforeseen delays and misalignments in resource allocation can disrupt intended
outcomes, a challenge that aligns with the network uncertainties analyzed in our paper.

2Liang (2018) highlights lessons from previous financial crises, emphasizing the role of central author-
ities in addressing systemic risks and uncertainties, which parallels the decision-making challenges under
ambiguity discussed in our paper.
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However, in both cases, the interconnected nature of the underlying networks creates

significant uncertainties. Regions or institutions often trade, share, or collaborate to address

local fluctuations in needs or to capitalize on unexpected partnerships. For instance, during a

pandemic, patients might be transferred between hospitals, or vaccines might be reallocated

across regions experiencing sudden outbreaks. In financial networks, banks might redistribute

liquidity through interbank lending or adjust their portfolios based on market conditions.

These interactions, while potentially beneficial, can also lead to unpredictable spillover effects

and deviations from the original allocation plans.

Such uncertainties pose significant challenges to the effectiveness of resource distribution.

Unforeseen trading patterns, unexpected collaborations, and fluctuating demands can create

imbalances, leaving some regions or institutions under-resourced while others receive excess

supplies. To address these challenges, central authorities must incorporate potential uncer-

tainties into their planning and adopt robust intervention strategies that ensure effective

outcomes, even in the face of unpredictable changes and complex interdependencies.

These scenarios illustrate a fundamental problem faced by central authorities: how to

intervene in uncertain networks to guide resource distribution toward specific goals. After

the initial allocation, agents may engage in trading or collaboration, creating unpredictable

outcomes. Central authorities need to incorporate potential network uncertainties into their

strategies to ensure that final outcomes align with intended targets. In particular, they need

intervention strategies that are robust in the face of such uncertainties, ensuring that final

outcomes align with their objectives even when the network behaves unexpectedly.

To tackle the challenge of robust intervention in uncertain networks, we frame the

decision-making problem as a zero-sum game between a DM and an adversarial Nature.

At the core of this analysis is the DM’s objective function, which features a quadratic form

that captures the interaction between the intervention strategy and the network’s uncertain

structure. Nature’s role is to manipulate the network by maximizing this quadratic term,

effectively amplifying the uncertainty in the most detrimental way for the DM. Therefore,

from the DM’s point of view, by considering the worst-case scenarios resulting from these

uncertainties, the DM devises intervention strategies that remain effective regardless of how

the adversarial Nature manipulates the network formation process (Theorem 1).

We find that under regularity conditions, there is a unique worst-case scenario where

Nature optimizes the correlation between agents’ outcomes based on the signs of the inter-

vention vector entries chosen by the DM (Theorem 2). Importantly, Nature’s chosen matrix

exhibits a rank-1 property, meaning that uncertainty is concentrated in a single principal

component aligned with the DM’s intervention vector. This allows Nature to amplify the

uncertainty in a specific direction, maximizing the potential harm to the DM’s objective.
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The worst-case scenario is thus characterized by Nature selecting a principal component

that focuses all uncertainty on the most damaging aspect of the DM’s intervention.

The consideration of network uncertainty and robust intervention provides new insights

in the literature on optimal intervention. In Section 4.2, we provide a simple example of two

agents, where agent 1 generates a higher mean externality than agent 2, and the greater

uncertainty associated with allocations to agent 1 introduces significant risk. We find that

when the uncertainty associated with allocation toward agent 1 exceeds a certain threshold,

it is preferable to target agent 2, despite their lower mean influence. This shift in strategy

highlights the importance of considering not only mean influence but also the risks posed

by uncertainty when making intervention decisions. Previous models, which emphasized tar-

geting highly central agents to maximize influence, often overlooked this dimension. This

insight broadens the scope of network intervention strategies, emphasizing the importance

of accounting for uncertainty to ensure robust outcomes.

We also provide two important extensions of our model. First, we present an extension

for higher-order interactions. In various contexts, the outcome after agent interactions in a

network reflects higher-order influences. Network games, supply chain networks, and financial

contagion models are just a few examples of such higher-order interactions. Using a second-

order approximation of behavior under regular conditions, we show that the rank-1 property

of the worst-case scenario also emerges.

Second, we extend our analysis by considering robust intervention strategies under par-

tial information. Specifically, we examine a scenario where a new agent joins an existing

network, and the DM has limited knowledge of the covariances between the new agent and

established members. This reflects real-world situations and challenges, such as when a new

researcher joins a collaboration network, and the DM must allocate resources without fully

understanding the new member’s interactions. We find that despite incomplete information,

there exists a unique worst-case scenario chosen by the adversarial Nature because it can

exploit it optimally (Theorem 3). We demonstrate that with respect to the DM’s interven-

tion decision, the worst-case scenario balances the DM’s knowledge of the existing network

with the uncertainty of the new agent’s influence. This result highlights the importance of

accounting for both known and unknown information for robust intervention.

1.2 Related Literature

The current paper is broadly related to three strands of literature: network interventions,

strategic interactions in networks, and robust mechanism design.

Intervention in networks. In the recent growing literature on intervention in networks,
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there are two approaches: (i) intervening in the network structure (e.g., Della Lena, 2024; Sun

et al., 2023) and (ii) intervening in incentives within a given network structure (e.g., Belhaj

et al., 2023; Galeotti et al., 2020, 2024; Jeong and Shin, 2024; Parise and Ozdaglar, 2023). Our

paper relates to both strands of this literature. Specifically, we study how a DM can intervene

in agents’ strategic incentives while accounting for uncertainty in the realized network, which

arises from a game-like interaction between the DM and an adversarial Nature. Under certain

constraints, the network structure is determined by Nature, an adversarial player whose

objective opposes that of the DM. Galeotti et al. (2024) also examine robust interventions

to improve market efficiency in the context of oligopolistic market competition. Their notion

of robustness focuses on achieving a certain property with high probability. In contrast, our

approach emphasizes worst-case scenario optimization, aligning more closely with the robust

mechanism design literature (e.g., Bergemann and Morris, 2005; Carroll, 2015).

Strategic interactions in networks. Intervention models are applicable to various frame-

works, such as public goods games (e.g., Allouch, 2015; Bramoullé and Kranton, 2007; Ga-

leotti and Goyal, 2009) and social learning models (e.g., DeGroot, 1974; DeMarzo et al.,

2003; Golub and Jackson, 2010, 2012). One particular area of the literature related to our

research focuses on network games with uncertainty. Previous studies (e.g., Chaudhuri et al.,

2024; Galeotti et al., 2010; Shin, 2021) examine uncertainty on the agents’ side, where agents

make equilibrium decisions based on incomplete information about the underlying networks.

In contrast, the current paper considers uncertainty on the DM’s side; the DM, who in-

tervenes in agents’ behavior, has limited information about the underlying networks. In

addition, the current paper is related to the best-response dynamic in networks (e.g., Bayer

et al., 2023; Golub and Jackson, 2012). In our model, the DM’s objective is to guide agents’

behavior closer to a target outcome. In a best-response dynamic, a natural target outcome is

the equilibrium, as it encourages agents’ behavior to converge to the equilibrium as quickly

as possible.

Robust mechanism design. Our study relates to the growing literature on robust mecha-

nism design. Bergemann and Morris (2005) develop a robust implementation framework that

achieves equilibrium under minimal assumptions about agents’ knowledge. In a principal-

agent model, Carroll (2015) extends this approach by relaxing distributional assumptions and

designing mechanisms that perform optimally under worst-case scenarios of informational

uncertainty. Similar worst-case scenario and maxmin approaches have been extensively ap-

plied not only in principal-agent settings (e.g., Frankel, 2014; Garrett, 2014; Kambhampati,

2024) but also in auction settings (e.g., Brooks and Du, 2024, 2021; Che, 2022; He and Li,

2022; Koçyiğit et al., 2019) and industrial organization theory (e.g., Guo and Shmaya, 2025).
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To the best of our knowledge, the current paper is the first to study the robustness of a

DM’s intervention when there is uncertainty about the relevant network structure.3 As in the

previous robust mechanism design literature, we analyze the DM’s intervention strategy in a

network setting to ensure ex-ante optimal outcomes under worst-case scenarios. In our model,

due to the quadratic objective function of the DM, the worst-case scenario is represented by

the correlation structure, which is in line with, for example, Cremer and McLean (1988), He

and Li (2022), Myerson (1981). In terms of modeling uncertainty, Che (2022) and Koçyiğit

et al. (2019) consider distributional robustness; in contrast, the current model approaches

uncertainty as a matrix completion problem.

The rest of the paper is organized as follows. In Section 2, we introduce the model.

In Section 3, we first provide key mathematical features with assumptions to study robust

intervention. Then, we characterize the DM’s unique robust intervention and the unique

worst-case scenario chosen by Nature. In Section 5, we provide a series of extensions and

applications of the model. Section 6 concludes. All the proofs are gathered in Appendix A.

2 Model

2.1 Setup

Notation. Throughout this paper, we represent each vector as a column vector. For a given

vector a, we denote its i’th entry by ai. For any two vectors a and b, their inner product is

denoted by ⟨a,b⟩, and their outer product is denoted by a ⊗ b. ||a|| represents the vector

norm induced by the canonical inner product, specifically the l2 norm. s(ai) represents the

sign of each non-zero entry ai of vector a. Matrices are denoted in boldface, and for a matrix

A, we use the following notation: Ai represents its ith row (as a vector), Aj represents its

jth column (as a vector), Aij denotes the element in the ith row and jth column, and AT

denotes its transpose. ||A|| is the matrix norm induced by the vector norm, which itself is

induced by the canonical inner product. ||A||F denotes the Frobenius norm.4 As long as there

is no confusion, a vector can be treated as a type of matrix. For instance, using the definition

3Several studies have highlighted that network formation processes are often influenced by the surround-
ing environment. For instance, during COVID-19, Zhang et al. (2020) demonstrate that contact patterns
between age groups shifted due to social distancing measures, creating uncertainty around susceptibility to
infection and the dynamics of COVID-19. Similarly, Kang et al. (2023) show that the pandemic drastically
altered traffic patterns across New York City’s five boroughs, as social distancing disrupted connectivity. In
the context of adolescent friendship networks, Choi et al. (2024) find that homophilistic friendship formation
patterns change when educational pedagogy undergoes changes.

4Since ||A|| corresponds to the spectral norm, if A is symmetric and positive semi-definite, then we have
||A|| = λmax ≤

∑n
i=1 λi = ||A||F, where λmax ≥ 0 is the largest eigenvalue of A, and λi ≥ 0 is the ith largest

eigenvalue of A. Equality holds if and only if A is a rank-1 matrix.
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of transpose, the outer product of two vectors a and b is represented as a⊗ b = abT.

Network, uncertainty, and intervention. Let N = {1, 2, . . . , n} represent the set of

agents. The relationships and interactions among these agents are encapsulated by an n× n

matrix G ∈ Rn×n, referred to as the influence network. For a given allocation vector x ∈
Rn, the resulting outcome vector is computed as Gx. Each element Gij in the influence

network characterizes the influence of agent j’s allocation on agent i’s outcome: a positive

Gij indicates a beneficial effect, while a negative Gij suggests a detrimental one. Thus, Gijxj

quantifies the degree to which agent j’s allocation influences agent i’s outcome. Our analysis

does not rely on any specific symmetry in G. Depending on the intervention context, G may

be assumed to be symmetric, as in network games (e.g., Galeotti et al., 2020), or asymmetric,

as in social learning on networks (e.g., Jeong and Shin, 2024).

A decision maker (DM) is tasked with allocating limited resources to agents by selecting

the allocation vector x. While the specific problem faced by the DM will be defined later,

we first address the uncertainty the DM encounters. The influence network G is not fully

known to the DM, as it is modeled as a random matrix. It is postulated that the elements

of G, namely Gij, are correlated random variables. The DM is informed of the mean mij

and the variance v2
ij with vij > 0 for each Gij but lacks information about the covariance

between them for all i, j ∈ N .

Adversarial Nature and sequence of decisions. As in the standard robust optimization

problem, the decision-making framework can be illustrated by a sequence of staged decisions,

encapsulating interactions with an adversarial entity termed Nature.5 In the first stage, the

DM selects the allocation vector x to make Gx as close as possible to the target outcome z,

while accounting for the direct cost of deviating from the reference allocation vector x0.

Subsequently, in the second stage, an adversarial player, Nature, “intervenes” by choosing

the influence network G among the agents. Nature’s primary objective is to act in direct

opposition to the DM’s interests, by manipulating the realization of the underlying network

among the agents.

Finally in the third stage, interactions among the agents occur within the established

network parameters, ultimately leading to the realization of an allocation outcome. Since

the DM acts as the first mover, they must anticipate Nature’s potential actions when for-

mulating their strategy. As will be explained in the next section, Nature’s action set, called

the uncertainty set, is compact due to the known mean and variance of Gij for i, j ∈ N .

5Another interpretation is the existence of multiple priors due to the limited information regarding the
network statistics. For a detailed discussion and applications of robust intervention problems, see Ben-Tal
et al. (2009) and references therein.
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Therefore, the DM’s robust optimization problem is formally defined as follows:

min
x∈Rn

max
{Cov(GiGj)}i,j∈N

1

2

(
E
[
||Gx− z||2

]
+ ||C

1
2 (x− x0)||2

)
subject to E [Gij] = mij and Var[Gij] = v2

ij for all i, j ∈ N,

(1)

where vector x = (x1, . . . , xn)
T ∈ Rn represents the DM’s choice of allocation vector across

the agents, z = (z1, . . . , zn)
T ∈ Rn is the target outcome vector, x0 is a reference allocation

vector, and C is a symmetric positive semi-definite matrix, without loss of generality.6 The

first term E [||Gx− z||2] measures the cost of having an outcome that deviates from the

target vector z. The second term ||C 1
2 (x−x0)||2 represents the cost of choosing an allocation

that deviates from the reference allocation vector x0. The equations specified under the

constraints in the optimization problem represent the statistical information—the mean,

E [Gij], and variance, Var[Gij]—provided to the DM. A detailed interpretation and the

implications of the cost function and information structure are collated in Section 4.3.

3 Analysis

3.1 Decomposition and Assumptions

Decomposition. To isolate the distinct aspects of the objective function and derive theo-

retical insights more efficiently, we decompose it into its component parts. For each pair of

agents i and j, Uij = Gij −mij represents the deviation of the influence from its mean. By

construction, the mean of Uij is zero, and its variance is v2
ij.

7 Let mi = E[GT
i ] be the vector

of mean influences toward i, and let Ui = GT
i −mi represent the vector of deviations of the

influences toward i. Then, the expected value of the squared distance between the allocation

outcome to agent i and the target allocation is

E[|Gix− zi|2] =
n∑

j=1

n∑
k=1

xj (mijmik + E[UijUik])xk − 2zi

n∑
l=1

milxl + z2i

= ⟨x,Mix⟩+ ⟨x,Bix⟩ − 2⟨ψi,x⟩+ z2i , (2)

where Mi = mi ⊗ mi, Bi = E[UT
i Ui] is the covariance matrix of the influence deviations

from the means toward agent i, and ψi = zimi encapsulates the zi-weighted mean influences

of the other agents on agent i’s outcome. Since E[||Gx − z||2] =
∑n

i=1 E[|Gix − zi|2], by
6Without loss of generality, C is assumed to be symmetric because the decision maker’s objective func-

tion is quadratic. The mathematical expectation in the objective function is multiplied by 1
2 , following the

conventional normalization for quadratic objective functions (e.g., Galeotti et al., 2020, 2024).
7Formally, E[Uij ] = 0 and Var[Uij ] = E[U2

ij ] = Var[Gij ] = v2
ij for all i, j ∈ N .
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summing up expression (2), we obtain

E[||Gx− z||2] = ⟨x,Mx⟩+ ⟨x,Bx⟩ − 2⟨ψ,x⟩+ ||z||2, (3)

where M =
∑n

i=1Mi represents the aggregated mean network influence, reflecting the cu-

mulative average effects across all agents. Similarly, B =
∑n

i=1 Bi represents the aggregated

uncertainty of network influence, encapsulating the collective variability in agent interac-

tions. Finally, ψ =
∑n

i=1 ψi =
∑n

i=1 zimi is the z-weighted sum of mean network influence

across the agents, effectively quantifying the targeted influence alignment with the desired

outcomes.

Equation (3) decomposes the effects of changing allocation vector x into three distinct

channels. The first term, ⟨x,Mx⟩, encapsulates the effect of x through the mean of the

network influence structure to the objective function, highlighting how x contributes to the

predictable aspects of agent interactions. The second term, ⟨x,Bx⟩ quantifies the impact

arising from the inherent uncertainty within the network influence structure, addressing the

variability in agent responses that cannot be precisely predicted. The final term, 2⟨ψ,x⟩,
reflects the direct effect of x in aligning the actual outcomes more closely with the tar-

get outcomes, emphasizing the strategic alignment of resources. Among these components,

the second term uniquely introduces uncertainty through the network. Consequently, the

DM must carefully account for all possible realizations of B, which are determined by an

uncertainty set. This uncertainty set, formally defined as B in the following paragraph, en-

capsulates Nature’s choices and determines the scope of adversarial scenarios the DM must

address.

Uncertainty set. For each agent i ∈ N , let Bi denote a set of matrices Bi that are symmet-

ric, positive semi-definite, and have the diagonal elements (Bi)jj = v2
ij for all j ∈ N . This

set Bi, referred to as the individual uncertainty set, forms a convex, compact subset within

the space of all n × n real matrices.8 The aggregate of these sets is the Minkowski sum of

the individual uncertainty sets, defined by B = {B ∈ Rn×n |B =
∑n

i=1 Bi for some Bi ∈ Bi}.
This set represents all possible aggregated uncertainties that can be chosen by Nature and is

referred to as the “uncertainty set” in the literature on robust optimization (Ben-Tal et al.,

2009).9

8Using the Frobenious norm notation, it also follows that ||Bi||F =
∑n

j=1 v
2
ij for all Bi ∈ Bi. Note

that for each i ∈ N , Bi is contained in a finite-dimensional Euclidean space. Furthermore, each Bi is also
bounded as |(Bi)jk| ≤ vijvik for all j, k ∈ N by the Cauchy–Schwarz inequality. This condition implies
that |Cov(Gij ,Gik)| ≤ vijvik for all j, k ∈ N . It is worth mentioning that this boundedness does not imply
positive semi-definiteness. Verifying convexity and closedness is straightforward.

9Our consideration of the uncertainty set in the network economics context differs from that in the robust
mechanism design literature. For instance, in Bergemann and Morris (2005), the uncertainty set pertains to
agents’ type spaces, encapsulating all possible payoff types and beliefs about others’ types. In Carroll (2015),
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Assumptions. In order to enhance the clarity of our analysis and ensure the uniqueness

of the DM’s robust optimization problem (1), we impose two key properties throughout the

paper:

(i) Property A. The aggregated mean network influence M has full rank (independent

responsiveness condition).

(ii) Property B. The solution to the DM’s robust optimization problem (1) contains no

zero entries (non-negligence condition).

The two properties have the following economic interpretations. First, note that Property

A (independent responsiveness condition) holds if and only if {mi}ni=1 is linearly indepen-

dent.10 Since mi represents the mean influence toward agent i, the full rank property implies

that the mean influence to any agent in the network is not a linear combination of the mean

influences toward other agents. Property A holds generically; that is, if M does not satisfy

Property A, then an arbitrarily small perturbation to M will be sufficient to make it hold.

This property ensures that the DM’s robust optimization problem (1) has a unique solution.

Second, as will be shown later, Property B (non-negligence condition), which pertains

to the existence of a solution containing no zero entry, is sufficient to guarantee a unique

solution to the DM’s robust optimization problem (1). Since the unique solution does not

contain any zero entries, every agent receives a positive allocation, preventing any agent from

being disregarded. Additionally, since the set {(M + C)x + ∂g(x) |x ∈ Z} is described by

a set of linear inequalities, its complement forms an open set. The presence of a non-empty

interior and the uniqueness of the solution facilitate comparative static analysis around the

unique solution.

Property B can be explicitly defined in terms of the model primitives. Specifically, define

g : Rn → R by g(x) = max
B∈B

1
2
⟨x,Bx⟩, and let ∂g(x) be the set of subgradients of g at x.

Define Z = {(M + C)x + ∂g(x) |x has a zero entry} ⊊ Rn. Property B holds if and only if

(ψ0+ψ) /∈ Z.11 Roughly speaking, Property B is more likely to hold when the set Z is smaller.

This property is satisfied for most parameter values, particularly when C is sufficiently large

in terms of its smallest eigenvalue.12 Another instance where Property B holds occurs when

it relates to the agent’s technology set, including possible actions represented as output distributions and
costs. In He and Li (2022), it arises from the auctioneer’s limited information about the correlation structure
of bidders’ valuations.

10Mathematically, the following are equivalent: (i) M =
∑n

i=1 mi ⊗ mi has full rank, (ii) {mi}ni=1 is
linearly independent, and (iii) M is a positive definite matrix.

11See Appendix B for proof. In the same section, we provide additional sufficient conditions under which
Property B holds, along with a graphical example of the two-agent case.

12For example, if C = cI for some c ≥ 0, it suffices to assume that c is sufficiently large, a condition often
assumed in the literature on network intervention (e.g., Galeotti et al., 2020; Jeong and Shin, 2024).
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M is large relative to the size of B (i.e., the sum of diagonal entities of B). Interpreted in

the context of influence network data, this scenario suggests that the DM’s estimate of M is

statistically significant, reducing the relative size of the remaining uncertainty (i.e., the size

of B).

3.2 Characterization of Unique Robust Intervention

By employing the decomposition and assumptions from the previous subsection, we fully

characterize the unique robust intervention of the DM in the presence of uncertainty in the

network structure.

Existence of unique robust intervention. We rewrite the DM’s objective function in

terms of x and B using a function f : Rn × B → R defined as:

f(x,B) =
1

2

(
⟨x,Mx⟩+ ⟨x,Bx⟩+ ⟨x,Cx⟩ − 2⟨ψ0 + ψ,x⟩+ ||z||2 + ||C

1
2x0||2︸ ︷︷ ︸

constant

)
, (4)

where ||C 1
2 (x− x0)||2 = ⟨x,Cx⟩ − 2⟨ψ0,x⟩+ ||C 1

2x0||2 and ψ0 = Cx0. The function f(x,B)

is strictly convex in x because the matrix M is positive definite by Property A, and the

matrices B and C are positive semi-definite. Furthermore, f(x,B) is linear in each individual

uncertainty Bi and in the aggregated uncertainty B. These characteristics facilitate the

formulation of the optimization problems faced by the DM and the adversarial Nature.

Utilizing expression (4), we can formulate the DM’s robust optimization problem (1)

and the corresponding dual problem for the adversarial Nature, structured as dual robust

optimization problems:

DM’s primal problem

min
x∈Rn

max
B∈B

f(x,B). (PP)

Nature’s dual problem

max
B∈B

min
x∈Rn

f(x,B). (DP)

Equipped with the duality between the two problems (von Neumann, 1928), we can find

a unique solution to the DM’s primal problem (PP), in relation to Nature’s dual problem

(DP):

Theorem 1 (Duality and Uniqueness) The following duality holds:

min
x∈Rn

max
B∈B

f(x,B) = max
B∈B

min
x∈Rn

f(x,B). (5)

Furthermore, the DM’s primal problem (PP) has a unique solution x∗ = (M+B∗+C)−1(ψ0+

ψ) for any solution B∗ to Nature’s dual problem (DP).
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Let x∗ denote a solution of problem (PP), with the corresponding set of solutions repre-

sented by X ∗. Denote Nature’s aggregated best response to x∗ by BBR(x
∗). Similarly, let B∗

denote a solution of problem (DP), with the corresponding set of solutions represented by

B∗, and let the DM’s best response with respect to B∗ be denoted by xBR(B
∗). The first part

of Theorem 1 establishes that the optimal values of both the original and the dual problems

are equivalent; that is, f(x∗,BBR(x
∗)) = f(xBR(B

∗),B∗) for any x∗ ∈ X ∗ and B∗ ∈ B∗.13

However, the duality does not necessarily imply that the DM’s optimal choice x∗ and Na-

ture’s best response BBR(x
∗) in the DM’s primal problem (PP) directly solve Nature’s dual

problem (DP). In other words, solving the dual problem (DP) using the backward induction

does not necessarily resolve the primal problem (PP). The second part of Theorem 1 primar-

ily establishes that the original problem (PP) has a unique solution, even though Nature’s

best response with respect to x∗ as the second mover, BBR(x
∗), have multiple values.

Furthermore, the second part of Theorem 1 states that, although there may be multiple

worst-case scenarios (i.e., |B∗| > 1), there exists a unique optimal choice for the DM, x∗ =

(M+B∗ +C)−1(ψ0 +ψ) for any B∗ ∈ B∗, that solves problem (PP).14 This unique solution

satisfies the linear equation (M + B∗ + C)x∗ = (ψ0 + ψ), offering an interpretation of the

solution in terms of the model parameters. First, x∗ is adjusted to align with the mean

influences represented by M. Second, x∗ takes into account the risk by responding optimally

to Nature’s adversarial choice B∗. Third, x∗ remains cost-effective, considering the cost

structure given by C. The combined influence of the initial allocation ψ0 and the target

allocation ψ guides x∗ towards a balance between the current state of intervention and its

desired outcome.

Characterization of the unique worst-case scenario. Now, we characterize a unique

worst-case scenario as Nature’s optimal choice and determine the corresponding best response

of the DM.

In the DM’s objective function (4), the only term that depends on Nature’s choice B is

⟨x,Bx⟩. Therefore, Nature’s optimal choice in the dual problem (DP) maximizes ⟨x∗,Bx∗⟩.
Consequently, the properties of B∗ depend on the properties of x∗.

Indeed, if x∗ does not contain any zero entry by Property B, then there exists a unique

worst-case scenario for the DM’s choice. To understand why, consider an example with two

agents, where Nature’s choice maximizes ⟨x∗,Bx∗⟩ = ⟨x∗,B1x
∗⟩+ ⟨x∗,B2x

∗⟩. The first term
expresses the uncertainty generated by influences toward agent 1’s outcome, while the second

13This best-response relationship provides another characterization of the DM’s solution as an action
profile of a game between the DM and Nature, in which DM tries to minimize f(x,B) but Nature tries to
maximize f(x,B) (e.g., von Neumann et al., 2007). Our proof in Appendix A builds on this interpretation.

14Note that multiplicity of B∗ may arise from its multiple representations, B∗ as B∗ ∈
∑n

i=1 Bi. The
invertibility of M+B∗ +C is ensured by Property A.
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term represents the uncertainty generated by influences toward agent 2’s outcome. Without

loss of generality, we focus on B1, since the choice of B2 independently impacts Nature’s

objective due to linearity.

Note that B1 is a symmetric positive semi-definite matrix, with its diagonal entries be-

ing v2
11 and v2

12, and its off-diagonal entry ρ1 = Cov(G11,G12) is undetermined, bounded

by |ρ1| ≤ v11v12. The term ⟨x∗,B1x
∗⟩ reaches its maximum at the extreme value of ρ1;

consequently, ρ1 = v11v12 or − v11v12. In addition, by the spectral theorem (Meyer, 2010),

there are two non-negative eigenvalues, λ1 and λ2, and corresponding unit-length eigen-

vectors, w1 and w2, such that B1 = λ1(w1 ⊗ w1) + λ2(w2 ⊗ w2). Interestingly, when

ρ1 = v11v12 or − v11v12, the first eigenvalue is ||B1||2F = v2
11 + v2

12, which is constant

for all B1 ∈ B1. Therefore, B1 = ||B||2F(w1 ⊗w1).

To determine the sign of ρ1, consider the entries of x∗. Since x∗ has no zero entry, two

cases arise: (1) the entries of x∗ have the same signs, or (2) the entries have opposite signs.

In the first case, where the signs are the same, the covariance of G11 and G12 must be

positive, as a negative covariance would create a hedging effect, which is suboptimal for

Nature. Similarly, in the second case, where the signs are opposite, the covariance of G11

and G12 must be negative. Thus, ρ1 = s(x∗
1)s(x

∗
2)v11v12, which leads to w1 = q1

||q1|| , where

q1 = (s(x∗
1)v11, s(x

∗
2)v12)

T and is located in the same orthant with x∗.

The above analysis demonstrates that Nature’s optimal strategy concentrates uncertainty

in the first principal component, aligned with the DM’s intervention vector (in the sense that

they are in the same orthant). By doing so, Nature maximizes the uncertainty effect relative

to the DM’s choice. Since the analysis for agent 1 is independent of that for agent 2, we

obtain a unique closed-form expression for B∗
i = σ2

i (wi⊗wi), where σ
2
i = ||B∗

i ||2F =
∑n

j=1 v
2
ij

and wi =
qi

||qi|| with qi = (s(x∗1)vi1, s(x
∗
n)vin)

T for i = 1, 2.

The analysis is closely related to the orthogonal decomposition techniques commonly

used in the literature on intervention in networks (e.g., Galeotti et al., 2020, 2024; Jeong and

Shin, 2024). In those models, an orthogonal decomposition tracks the effects of the DM’s

choice across multiple dimensions, with the network given as a model parameter, so the

principal components of the underlying network are fixed. However, in the current model,

for each agent i, the unique principal component with a non-zero eigenvalue, qi, is optimally

chosen by Nature in the dual problem, with an objective function opposing that of the

DM. Consequently, the adversarial Nature focuses on a particular principal component and

concentrates all its effects on each agent i through this choice of principal component.

The following theorem summarizes what we have discovered so far.

Theorem 2 (Unique Worst-Case Scenario) There exists a unique solution to Nature’s

dual problem (DP), B∗ =
∑n

i=1B
∗
i in which B∗

i = σ2
i (wi ⊗ wi) with σ2

i =
∑n

j=1 v
2
ij, wi =

13



qi

||qi|| , and qi = (s(x∗
1)vi1, . . . , s(x

∗
n)vin)

T for all i ∈ N . Consequently, the unique solution to

problem (PP) is given by the solution to the following equation:

x∗ =

(
M+

n∑
i=1

σ2
i

(
qi

||qi||
⊗ qi

||qi||

)
+C

)−1

(ψ0 + ψ),

where qi = (s(x∗
1)vi1, . . . , s(x

∗
n)vin)

T for all i ∈ N .

Theorem 2 provides an algorithmic approach toward finding the robust solution by apply-

ing the principle of backward induction. First, identify all the relevant orthants in Rn where

no entry of each orthant is zero. For example, if n = 2, there are four quadrants to consider.

Second, since Nature’s optimal choice in the dual problem (DP) depends only on the sign of

x∗, determine the possible values of Nature’s choice for each orthant. For example, if n = 2,

identify four possible values for each qi = (si1vi1, si2vi2)
T, where si1 ∈ {+1,−1}. Finally, for

each orthant, calculate B =
∑n

i=1 qi ⊗ qi and verify whether (M+B+C) remains in the

same orthant in which it started. If so, that orthant provides the unique robust intervention

solution. Otherwise, try another orthant and repeat the process, which will end in a finite

number of steps.

We conclude by noting that G can be symmetric. One might think that constructing the

covariance matrix Bi for the links toward agent i could influence the construction of Bj for

the links toward another agent j, and that due to the symmetry of G, Bj might not be a

rank-1 matrix. However, this is not the case, as shown in the proof of Theorem 2.

4 Comparative Analysis and Model Implications

4.1 Cost of Uncertainty

We now investigate how changes in the degree of uncertainty affect the performance of the

robust intervention. In our model, uncertainty is introduced by an adversarial Nature under

specific constraints. Since the magnitude of the uncertainty constraint is bounded by the

variance of the entries in the influence matrix G, we examine how changes in these variances

influence the performance of the robust intervention—a concept we refer to as the cost of

uncertainty.

There are two possible measures of the cost of uncertainty: (i) global uncertainty and (ii)

local uncertainty. For the cost of global uncertainty, recall that the DM’s uncertainty about

the network structure are captured by the aggregated uncertainty matrix B∗ =
∑n

i=1 B
∗
i ,

with the underlying network G distributed around M. Note that the worst-case scenario

occurs at the boundary of Nature’s uncertainty set B. Therefore, we define the cost of global
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uncertainty as the partial derivative of the DM’s objective function with respect to B∗,

evaluated at the robust intervention x∗.

Regarding the cost of local uncertainty, we observe that at the boundary of the uncer-

tainty set, the level of correlation is maximized to match the level of variance of the associated

component, measured by ∥Bi∥F for each agent i. Since ∥Bi∥F represents the sum of the vari-

ances of the links toward agent i, the relevant aggregated uncertainty level for the DM is

the sum of these variances. Consequently, we can measure the cost of local uncerntainty as

the partial derivative of the DM’s objective function with respect to v2
ij, evaluated at the

robust intervention x∗. This approach measures the change in the objective function due to

the variance of a particular link in the network, while the cost of global uncertainty captures

the impact of simultaneous changes in all the variances.

Cost of global uncertainty. When the objective function is perturbed by a change in B

in the direction of ∆B, the directional change is given by Trace
(

∂f(xBR(B),B)
∂B

T
∆B

)
. Using

standard matrix calculus, we find that ∂f(x∗(B),B)
∂B

= x ⊗ x, which is positive definite and

rank-1. Positive definiteness implies that the matrix does not reverse the direction of any

vector; it can only stretch or leave the vector unchanged. This rank-1 property indicates that

perturbations in the function f(xBR(B),B) are highly directional, with the function being

most sensitive to changes in B that align with the direction of x.

Consequently, at the robust intervention solution xBR(B
∗) = x∗, the directional change

is non-negative if ∆B aligns with the direction of x∗. The rank-1 property implies that the

value of the function will either increase or remain constant when B is perturbed in the

direction aligned with this gradient, x∗⊗x∗, and no decrease occurs unless ∆B is orthogonal

to the gradient. The following proposition formalizes this discussion:

Proposition 1 (Cost of Global Uncertainty) The cost of global uncertainty is x∗ ⊗ x∗,

which is positive semi-definite and rank-1.

We conclude by noting that Property B is necessary to ensure that the derivative is

well-defined.

Cost of local uncertainty. We now investigate the cost of local uncertainty. First, note

that (Bi)
∗
jk = vijviks(x

∗
j)s(x

∗
k) for any i, j, k ∈ N , which represents the covariance of agent

j’s and agent k’s allocations toward agent i’s outcome at the worst-case scenario determined

by Nature. Thus, when vij changes for some i, j ∈ N , it affects not only the variance of the

directional link from agent j to agent i, but also all the covariances that are associated with

the two agents. Specifically, recall that adversarial Nature’s choice maximizes the covariance

of the agents within the constraint of uncertainty. For a given agent i, an increase in the
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variance of the link from agent j’s allocation to agent i’s outcome raises the upper bound

of the covariance between this link and all other links from the other agents to i, including

the link from j to i. Consequently, the partial derivative of the DM’s objective function with

respect to vij is given by 2
∑n

k=1 vik|x∗j ||x∗k|, which is strictly positive if Property B holds,

ensuring the unique existence of the derivative, as with the cost of global uncertainty.

Unlike the cost of global uncertainty, where a change in B is multi-directional, the cost

of local uncertainty is strictly positive due to the unidirectional change of vij (i.e., only in

an increasing direction). The following proposition formalizes our discussion:

Proposition 2 (Cost of Local Uncertainty) The cost of local uncertainty for the link

from agent j to agent i is 2
∑n

k=1 vik |x∗j ||x∗k|.

4.2 Trade-Offs Between Uncertainty and Mean Influence

In this subsection, we use a two-agent network example to illustrate the trade-off between

minimizing uncertainty costs and targeting an agent with higher mean influence. It intro-

duces an uncertainty threshold, demonstrating that when uncertainty exceeds this threshold,

prioritizing the less uncertain agent with lower mean influence becomes the optimal inter-

vention strategy.

Consider the network of two agents illustrated by Figure 1. For simplicity, we parameterize

the network such that m11 = m21 = m > m22 = m12 = 1, so that any allocation to agent 1

generates a strictly greater mean externality than one to agent 2. To capture the uncertainty

in the agents’ influences, we set v11 = v21 = v > v22 = v12 = 1, implying that an allocation

to agent 1 generates higher uncertainty compared to agent 2. The two agents are otherwise

identical, with x0 = 0, z = (1, 1)T, and C = cI for some sufficiently large c > 0. These

parameters allow us to explore the trade-off between agent 1’s higher mean externality and

greater uncertainty.

1 2G11

G12

G22

G21

Figure 1: Example of two-agent network. Each arrow represents the degree of influence of the
allocation given to the starting agent to the heading agent. Since m11 = m21 >m12 = m22,
the thick arrows represent a higher mean influence than the dashed arrows.
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We calculate the aggregated mean influence and uncertainty matricesM andB as follows:

M = 2

[
m2 m

m 1

]
and B = 2

[
v2 ρ1+ρ2

2
ρ1+ρ2

2
1

]
,

where ρ1 ∈ [−v, v] is the covariance of G11 and G12, and ρ2 ∈ [−v, v] is the covariance of G21

and G22. Property A is satisfied because m > 1. Property B holds as (ψ0 + ψ) = 2(m, 1)T /∈
Z = {(M+C)x+ ∂g(x) |x has a zero entry} because c > 0 is sufficiently large.

A natural guess for the orthant in which x∗ is contained is the first quadrant. Then, by

Theorem 2, Nature concentrates all the uncertainty in the first principal component, aligned

with the DM’s intervention vector in the first quadrant as

B∗ = 2

[
v2 v

v 1

]
= 2

([
v

1

]
⊗

[
v

1

])
.

Consequently, we calculate the optimal robust intervention solution x∗ as

x∗ = (M+B∗ + cI)−1 (ψ0 + ψ) =

[
m2 + v2 + c

2
m+ v

m+ v 2 + c
2

]−1 [
m

1

]
=

1

△

[
(1 + c

2
)m− v

v2 + c
2
−mv

]
,

(6)

where △ > 0 is the determinant of M+B∗ + cI. The DM allocates more resources to agent

1 (i.e., x∗1 ≥ x∗2) if and only if the uncertainty associated with agent 1 is smaller than a

threshold v(m) that is calculated as

v(m) =
1

2

(
(m− 1) +

√
2c(m− 1) + (m+ 1)2

)
.

The threshold v(m) is strictly increasing and concave in m.

The above results illustrate the trade-off between leveraging higher mean influence and

managing the risks of increased variance. The increasing threshold v(m) implies that as

agent 1 becomes more influential in terms of individual mean externality, a higher level of

uncertainty can still justify allocating more resources to that agent. In other words, the

benefit of targeting agent 1 (higher mean influence) grows as m increases, making it more

acceptable to tolerate higher uncertainty in the influence of that agent. The concavity of the

threshold implies that the rate at which the threshold uncertainty increases diminishes as

m grows larger. Initially, small increases in m allow for significant increases in acceptable

uncertainty, but further increments in m result in smaller increases in the acceptable level

of uncertainty. The following proposition summarizes the result:

Proposition 3 For a given m, there exists a threshold uncertainty level v(m) such that

x∗1 ≥ x∗2 if and only if v ≤ v(m). The threshold is strictly increasing and concave in m.

The economic insight from Proposition 3 offers an important extension to the literature

on intervention in networks. In models such as Galeotti et al. (2020) and Jeong and Shin
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(2024), the common recommendation is to target agents with high centrality, as their mean

influence is crucial for maximizing externalities. However, the current model introduces a

new dimension by incorporating uncertainty into the decision-making process. When the

DM’s objective accounts not only for mean influence but also for the associated risks and

robustness, targeting highly central agents may no longer be optimal. This broadens the

existing literature by highlighting the trade-off between leveraging high mean externalities

and managing uncertainty—an aspect that previous models have often overlooked.

We close this subsection by connecting Proposition 3 and the two costs of information.

First, by Proposition 1, the cost of global information is

x∗ ⊗ x∗ =
1

△2

[
(1 + c

2
)m− v

v2 + c
2
−mv

]
⊗

[
(1 + c

2
)m− v

v2 + c
2
−mv

]
,

which is rank-1, so the changes in the uncertainty matrix B that affect the DM’s objective

function are highly structured. In particular, in line with Proposition 3, the maximum change

in the cost is related to the trade-off between the uncertainty and the mean influence. For

example, when the uncertainty is lower than the threshold (i.e., v ≤ v(m)), the allocation

for agent 1 is greater than for agent 2 (i.e., x∗1 ≥ x∗2). Consequently, for this case, the cost of

global uncertainty is higher when the change in uncertainty is greater for agent 1.

Now, due to the uncertainty structure, we can also compare the cost of local information

for the two agents. Recall that, by Proposition 2, the cost of local uncertainty for the link

from agent j to agent i is 2
∑n

k=1 vik |x∗j ||x∗k|. Thus, the cost of local uncertainty for a link

becomes larger when the allocations for the agents associated with the link is large. For

example, when the uncertainty is lower than the threshold (i.e., v ≤ v(m)), the allocation

for agent 1 is greater than for agent 2 (i.e., x∗1 ≥ x∗2). Consequently, in this case, the cost of

local uncertainty is maximized for the link from agent 1 to agent 1 or agent 2, but minimized

for the link from agent 2 to agent 2 or agent 1.

4.3 Model Implications

Uncertainty in the network structure of the model. The optimized value of the DM’s

objective function, evaluated at the optimal solution, quantifies the guaranteed outcome of

the original objective under the “worst-case” scenario chosen by Nature. A key contribution

of this paper is the comprehensive characterization of the DM’s solution to the robust in-

tervention problem, along with the corresponding worst-case scenarios induced by Nature.

This characterization advances the literature by extending previous analyses (e.g., Belhaj

et al., 2023; Galeotti et al., 2020, 2024; Jeong and Shin, 2024), which assumes a fully known

influence network entry Gij, to cases where the DM has access only to the first and second
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moments of Gij. A more detailed comparison to prior work will be presented in Section 5.

There are several possible interpretations of the influence networkG. For instance,Gmay

represent the exchange or redistribution of allocated resources among agents. In the context

of food stamps or coupons, citizens might exchange these benefits informally based on their

individual needs. Such exchanges, though beneficial for addressing localized shortages, may

not be fully observed or known to the distributor. This uncertainty forces the distributor to

adopt a robust optimization approach, accounting for potential discrepancies in the network

of exchanges. By considering this uncertainty, the distributor can ensure that, even after

unobserved exchanges occur, the final distribution of food stamps more closely aligns with

a target distribution.

A similar challenge emerges in the context of distributing medical resources during a

pandemic, such as facial masks, vaccines, or protective equipment. A social planner such as

government or health authority allocates these scarce resources to regions or populations

based on observed needs, but individuals or institutions may redistribute them informally or

through local agreements. For instance, a region facing an unexpected surge in demand might

reallocate vaccines or masks from neighboring areas, leading to deviations from the original

distribution plan. Such redistribution, while addressing immediate needs, introduces uncer-

tainty into the overall allocation strategy of the social planner. To account for this, a robust

optimization approach becomes essential, allowing the distributor to design an allocation

strategy that ensures the final distribution of medical resources, after such redistributions,

still aligns with public health objectives, such as achieving herd immunity or maintaining

adequate protective equipment coverage across regions.

Another example arises in game-theoretic contexts, such as public goods games on net-

works (e.g., Galeotti et al., 2020). In these games, agents decide their contributions to a public

good, with each agent’s optimal contribution—or best-response action—depending on their

neighbors’ contributions, the network structure, and their individual endowments. The DM

can influence agents’ endowments to align their best-response actions with a desired target

profile, such as an efficient or equitable outcome. However, in networks with non-reciprocal

relationships, such as unequal mutual benefits or parasitism (e.g., Bayer et al., 2023), agents’

myopic best-response dynamics may fail to converge to a Nash equilibrium. In such cases,

the DM’s goal is to guide these dynamics toward stability and a target behavior.

Influence network G can also be interpreted in the context of viral marketing and social

learning (e.g., Jeong and Shin, 2024). In social networks, consumers exchange opinions about

products through their interactions, and firms invest substantial resources to influence this

opinion formation process. This process is often modeled as a DeGroot learning process (e.g.,

DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson, 2010, 2012), where each agent’s
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opinion is a weighted average of their neighbors’ opinions. The decision maker DM may in

this process by influencing agents’ opinions, for instance, through free samples, discounts or

targeted advertising. When the DM has limited information about the correlations among

consumer connections, they may adopt a robust optimization approach to ensure effective

interventions that achieve desired outcomes, even under network uncertainty.

Cost structure of the model. Here, we discuss the cost structure of the model represented

by the second term in the optimization problem (1), ||C 1
2 (x− x0)||2.

x1

x2

•x0

p

(a) c||⟨p,x− x0⟩||2

x1

x2

•x0

(b) c||x− x0||2

Figure 2: Illustration of the two cost functions

The term ||C 1
2 (x − x0)||2 can represent various situations depending on the context.

For example, in a budget allocation problem, one could set C = cppT with some c > 0

and p ∈ Rn
++ with ||p||2 = 1 for normalization. In this case, the expression simplifies to

||C 1
2 (x− x0)||2 = c||⟨p,x− x0⟩||2. This constraint reflects the cost of choosing an allocation

that deviates from a benchmark budget line passing the status quo allocation vector x0, as

illustrated in Figure 2-(a).15

Another example involves setting C = cI for some c > 0, leading to ||C 1
2 (x − x0)||2 =

c||x−x0||2. This represents the cost associated with deviating from the status quo allocation

vector x0, as illustrated in Figure 2-(b). Of course, a combination of these two constraints is

possible.16

15This cost structure represents a scenario where the DM, as a budget allocator, starts with a benchmark
budget line passing through the status quo allocation x0. Allocations that lie on this benchmark line do not
incur additional costs. However, if the allocation deviates from the line in the northeast direction (spending
more than the given budget), the DM incurs a cost proportional to the extent of the deviation, measured by
c||⟨1,x− x0⟩||2. In contrast, if the allocation deviates in the southwest direction (underutilizing the budget
and wasting part of it), no additional cost is incurred, as the unused budget is considered a sunk cost.

16For example, c1||⟨p,x−x0⟩||2+c2||⟨1,x−x0⟩||2 for some c1 and c2 > 0 represents a possible combination
of the two constraints of different types.
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5 Extensions

5.1 Robust Intervention with Network Expansion

We now extend the model to account for the introduction of a new agent into an existing

network, focusing on how the DM can determine a robust intervention despite the additional

uncertainties introduced by this inclusion. Specifically, a new agent joins a network of n

existing agents, labeled 1, . . . , n, where the DM has full knowledge of the covariance matrix

among the existing n agents (i.e., Cov(Gij,Gik) for each i, j, k ∈ {1, . . . , n}), but has limited

or no knowledge of the covariance between the new agent and the existing agents. For

example, consider a scenario where a new researcher joins an existing collaboration network.

The DM must decide how to allocate the research budget among the n+1 agents. While the

DM understands how the n existing members interact with one another, based on research

history and outputs, the covariances between the existing members and the new member

remain (partially) uncertain.

As an example, consider a network consisting of two existing members (agent 1 and agent

2) and one new agent (agent 3). For simplicity, we assume that the variance of the link is

one for all agents; that is, all the diagonal entries of each Bi are equal to one for i = 1, 2, 3.

Consequently, each entry of Bi matrix represents a correlation coefficient of the influences

toward agent i. We assume that agent 1’s influence on their own outcome is uncorrelated

with agent 2’s influence on agent 1’s outcome (i.e., (B1)12 = 0). In contrast, we assume that

agent 1’s influence on agent 2’s outcome is correlated with agent 2’s influence on agent 2’s

outcome (i.e., (B2)12 = ρ ∈ [−1, 1]), and the exact correlation coefficient ρ is known to the

DM. Finally, we suppose that all the other entries are unknown to the DM. Under these

conditions, the following matrices illustrate the uncertainty:

B1 =


1 2 3

1 1 0 ?

2 0 1 ?

3 ? ? 1

, B2 =


1 2 3

1 1 ρ ?

2 ρ 1 ?

3 ? ? 1

, and B3 =


1 2 3

1 1 ? ?

2 ? 1 ?

3 ? ? 1

.
B1 B2

There are two notable features in the examples of B3 and the other two matrices. First,

for any agent i = 1, 2, 3 in the network, all entries representing the correlation coefficient

between the influence of the new agent 3 on i and the influence of another existing agent

j = 1, 2 on i are undetermined; that is, (Bi)j3 is undetermined. In the illustrated matrices,

this feature is reflected by all the entries in the third row or column being undetermined and

represented by the question mark (i.e., ‘?’). This highlights the first source of uncertainty

introduced by the network expansion: the DM does not know how the new agent’s influence

21



on a third agent correlates with the influence of other existing agents on that third agent.

Second, the correlation coefficients of the existing members’ influences on agents are

asymmetric. Specifically, the influences of existing members on existing agents 1 and 2 are

known. This is illustrated by the fact that, for agent i = 1, 2, the principal submatrixBi ofBi,

highlighted by a blue solid-line box in the illustrated matrices, has all its entries determined.

In contrast, the influences of the existing agents on the new agent 3 are unknown. This

highlights the second source of uncertainty introduced by the network expansion: the DM

does not know how the existing agents’ influences on the new agent are correlated with one

another.

Consequently, all the off-diagonal entries in B3 are undetermined and represented by

the question mark in the illustrated matrices. This implies that, in the worst-case scenario,

Nature’s choice of B3 satisfies the rank-1 property, as established in Theorem 2. Therefore,

the remaining analysis focuses on characterizing undetermined entries in Bi for i = 1, 2

within an appropriate uncertainty set.

To model the DM’s partial information, we introduce the following notation. Let PDk

and PSDk denote the sets of all k × k real symmetric positive definite and positive semi-

definite matrices, respectively. Without loss of generality, assume that agent n + 1 is the

new agent joining the existing network of n agents. Let Bi ∈ PSDn for 1 ≤ i ≤ n represent

the covariance matrix among the existing n agents, and let Bi ∈ PSDn+1 for 1 ≤ i ≤ n + 1

denote the covariance matrix of all n + 1 agents. Since we are modeling the DM’s partial

information, we require that for each agent i = 1, . . . , n + 1, Bi is the n × n principal

submatrix of Bi, obtained by selecting the first n rows and columns of Bi. For the existing

Bi matrices, let bi = Var(Gi(n+1)) =
(
Bi

)
(n+1) (n+1)

> 0 represent the variance of the link

Gi(n+1) for i = 1, . . . , n + 1. Given B ∈ PSDn and b > 0, we define BPSD

B,b as the set of all

extended matrices of B with its last (n+1, n+1) entry fixed as b, forming a new uncertainty

set. Specifically, we define BPSD

B,b = BB,b ∩ PSDn+1, where

BB,b = {B ∈ R(n+1)×(n+1) |B is symmetric, Bij = Bij for all 1 ≤ i, j ≤ n,B(n+1)(n+1) = b}.

We denote by x ∈ Rn+1 the intervention of the DM.

The following theorem, Theorem 3, establishes the uniqueness of Nature’s best response

with respect to the DM’s intervention x—that is the uniqueness of the worst-case scenario.17

Theorem 3 (Uniqueness of the Worst-Case Scenario) There is a unique worst-case

scenario B
∗ ∈ BPSD

B,b that maximizes ⟨x,Bx⟩ if x contains no zero entries and B ∈ PDn.

17For expositional simplicity, we assume here that the DM possesses no knowledge of the new agent n+1’s
interaction with the existing n agents. As such, Theorem 3 is a special case of Theorem 5, in which the DM
is allowed to have “partial” knowledge of the new agent n + 1’s interaction with the existing n agents. See
Appendix A for the proof.
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To provide intuition behind Theorem 3, let us revisit the example network of two existing

members (agent 1 and agent 2) and one new agent (agent 3). Since none of the entries of

x is zero, by linearity, we have ⟨x,Bx⟩ = ⟨x,B1x⟩+ ⟨x,B2x⟩+ ⟨x,B3x⟩. By Theorem 2, it

follows that a unique B
∗
3 is given by B

∗
3 = σ2

3(w3 ⊗w3) with σ
2
3 =

∑3
j=1 v

2
3j = 3, w3 =

q3

||q3|| ,

and q3 = (s(x1), s(x2), s(x3))
T. Note that B

∗
3 is a rank-1 matrix consistent with Theorem 2.

Notably, the uniqueness of the worst-case scenario for existing agent i = 1, 2 arises from

the strict convexity of the uncertainty set, which differ from the reasoning behind the unique-

ness of B3. To determine B1, we first observe that ⟨x,B1x⟩ = x3
(
(B1)13x1 + (B1)23x2

)
,

where (B1)13 = Corr(G11,G13) ∈ [−1, 1] and (B1)23 = Corr(G12,G13) ∈ [−1, 1]. The dashed

square in Figure 3-(a) represents these restrictions of the value of (B1)13 and (B1)23. Ad-

ditionally, Nature’s choice of uncertainty is constrained by the requirement that B1 must

be a positive semi-definite matrix, which holds if and only if det(B1) ≥ 0.18 The Schur

Complement theorem (Meyer, 2010) states that det(B1) ≥ 0 if and only if

(B1)33 − ((B1)13, (B1)23)B
−1
1 ((B1)13, (B1)23)

T ≥ 0,

which is equivalent to (B1)
2
13 + (B1)

2
23 ≤ 1, represented by the gray unit disk in Figure 3-

(a) contained in the dashed square. Consequently, the uncertainty set is strictly convex and

compact.19 The worst-case scenario for agents 1 must therefore be chosen in this uncertainty

set.

1

−1

1−1
(B1)13

(B1)23

(a) uncertainty set for agent 1

1

−1

1−1
(B2)13

(B2)23

(b) uncertainty set for agent 2 if
ρ = −0.5

1

−1

1−1
(B2)13

(B2)23

(c) uncertainty set for agent 2 if
ρ = 0.5

Figure 3: Illustration of the worst-case scenario. In each figure, the gradient of Nature’s
objective function at the unique worst-case scenario is orthogonal to the uncertainty set
denoted by the gray elliptical disk.

Since the uncertainty set is strictly convex, the gradient of the remaining objective

function must be orthogonal to the boundary of the uncertainty set. Because none of

18Note that a symmetric n× n matrix A with Aii > 0 and Aij ≤
√
Aii

√
Ajj for all i, j ∈ N is positive

semi-definite if and only if det(A) ≥ 0.
19Our proof in Appendix A addresses a more general condition, and the strict convexity of the uncertainty

set is not a direct consequence of the Schur Complement theorem.
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the entries of x is assumed to be zero, the gradient (represented by the blue arrow in

Figure 3) is well-defined. Consequently, there is a unique optimal choice B
∗
1, in which

∇⟨x,B1x⟩
∣∣
B1=B

∗
1
= x3(x1, x2) is orthogonal to the boundary of the uncertainty set as il-

lustrated in Figure 3-(a). At the optimal choice, a trade-off arises among the correlation

coefficients due to the strict convexity of the uncertainty set, which results from the new

positive semi-definiteness constraint.

The worst-case scenario for agent 2,B
∗
2, is also uniquely determined by the strict convexity

of the uncertainty set. However, it is worth examining how the shape of uncertainty set

changes due to the presence of the correlation among the influences toward agent 2. The

dashed squared in Figure 3-(b) represents the constraints that (B2)13 = Corr(G21,G23) ∈
[−1, 1] and (B2)23 = Corr(G22,G23) ∈ [−1, 1]. Again, Nature’s choice of uncertainty faces

another restriction: B2 must be a positive semi-definite matrix, which holds if and only if[
(B2)13 (B2)23

] [ 1 −ρ
−ρ 1

][
(B2)13

(B2)23

]
≤ 1− ρ2.

by the Schur Complement theorem. The pairs of ((B2)13, (B2)23)
T satisfying the above in-

equality forms an elliptical disk as illustrated in Figure 3-(b) and -(c). For each ρ ∈ [−1, 1],

there are two invariant principal components (i.e., eigenvectors) (1, 1)T and (1,−1)T, with

corresponding non-negative eigenvalues 1−ρ and 1+ρ, respectively. The uncertainty set for

ρ = −0.5 is shown as the rotated gray elliptical disk in Figure 3-(b), and the uncertainty

set for ρ = 0.5 is illustrated in Figure 3-(c). In both figures, the uncertainty sets are strictly

convex.

Equipped with the strict convexity of the uncertainty set, there exists a unique worst-

case scenario. In each figure above, assuming that all the entries of x∗ are strictly positive,

the gradient of Nature’s objective function at the worst-case scenario is orthogonal to the

uncertainty set in the first quadrant. Interestingly, depending on the given correlation coeffi-

cient ρ of the existing agents’ influences toward agent 2, the worst-case scenario changes. In

particular, the uncertainty set permits lower values of (B2)13 and (B2)23 as the correlation

becomes higher. For instance, in the figures, the region of the pairs of (B2)13 and (B2)23

in the first quadrant for ρ = 0.5 is smaller than the region for ρ = −0.5.20 Therefore, the

worst-case scenario values for (B2)13 and (B2)23 decrease as ρ increases.21

20Mathematically, the principal axes remain constant, while the length of the principal axis (1, 1)T is
strictly decreasing in ρ.

21If x∗ includes a negative entry (e.g., x∗
1 > 0 and x∗

2 < 0), the worst-case scenario values for (B2)13 and
(B2)23 may increase in magnitude as ρ increases.
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5.2 Higher-Order Interactions

So far, we have addressed the robust intervention problem in the context of one-shot in-

teractions among agents. However, in many studies in network economics, the focus shifts

to settings where agents interact repeatedly or infinitely often, leading to long-run equilib-

rium outcomes. Such scenarios are commonly analyzed using the equilibrium representation

(I− δG)−1, where δ > 0 captures the strength of the network effect.

If the spectral radius of δG is less than one—ensured when δ is sufficiently small—the

equilibrium can be expressed as a power series: (I− δG)−1 =
∑∞

k=0(δG)k. In this represen-

tation, Gk
ij represents the weighted sum of all walks of length k from agent j to agent i,

capturing the k-th order influence of agent j’s allocation on agent i’s outcome.22 This power

series representation aggregates the influence dynamics across all possible walks within the

network.

The critical question, then, is how the decision maker (DM) can incorporate these higher-

order influences and the associated higher-order uncertainties into the design of a robust

intervention. By accounting for these dynamics, the DM can address the challenges of de-

signing effective strategies in networks where agents’ interactions propagate over time and

across multiple pathways.

We now extend our analysis and results to incorporate higher-order uncertainty under

additional assumptions. First, we assume that with a second-order approximation of (I −
δG)−1 ≈ (I+ δG+ δ2G2), the DM minimizes the following objective:

E
[
||(I+ δG+ δ2G2)x− z||2

]
. (7)

Second, we assume that Gii = 0 for all i ∈ N . This assumption is often valid in contexts

such as network games or supply chain network models, where the zero-order interaction

term I captures an agent’s self-influence after normalization. Third, we assume statistical

independence between the rows of G. Specifically, the influence on agent i is independent

of the influence on any other agent j ̸= i. For example, in a social learning model, agent i’s

weight on a third agent k is independent of agent j’s weight on agent k.

Under these assumptions, the adversarial Nature’s choice of the worst-case scenario is

characterized by a unique rank-1 covariance matrix B∗
i for each agent i. To simplify expo-

sition, we assume that mij = E[Gij] = 0 for all i, j ∈ N , allowing us to focus solely on

the impact of uncertainty.23 Under this assumption, the expected squared distance between

22A walk of length k from node j to i is a sequence of nodes (i0, i1, i2, . . . , ik), such that i0 = j, ik = i,
and nodes in the sequence need not be distinct (Jackson, 2010).

23The proof of Proposition 4 does not rely on this zero mean influence of the agents.
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agent i’s final outcome and the target outcome zi is given by

E
[
|(I+ δG+ δ2G2)ix− zi|2

]
= x2i + δ⟨x,Bix⟩+

n∑
k=1

(δvik)
2⟨x,Bkx⟩+ z2i − 2zixi. (8)

The term δ⟨x,Bix⟩ in (8) arises from (δG)ix, capturing the uncertainty generated by the

first-order interactions among the agents with respect to agent i.

Another term,
∑n

k=1(δvik)
2⟨x,Bkx⟩, accounts for the second-order interactions affecting

agent i’s final outcome. For these second-order interactions, consider pairs of agents s and k

with intermediate agents s′ and k′ directly influencing agent i. The second-order interaction

from s to i and from k to i are represented by Gis′Gs′s and Gik′Gk′k, respectively. If s
′ ̸= k′,

the correlations between these second-order interactions are zero due to the assumption of

independence in link formation among the agents’ interactions.

Consequently, the second order effect arises only when there is a common intermediate

agent (i.e., k = s). For each intermediate agent, the correlations among walks of length 2 that

share agent k as the common intermediate agent are amplified by the discounted variance

(δvik)
2. For example, in Figure 4, the solid blue arrows directed toward intermediate agent

2 influence agent 1’s outcome and are independent of the other arrows directed toward a

distinct agent, such as the dashed green arrows leading to intermediate agent 3. Then, the

impact of the blue arrows on agent 1 is weighted by the discounted variance term δ2v2
12,

while the impact of the green arrows on agent 1 is weighted by the discounted variance term

δ2v2
13.

x1

x2

x3

...

xn

1

2

3

...

n

1

2

3

...

n

1

2

3

...

n

x2
1 + δ⟨x,B1x⟩+

∑n
k=1(δv1k)

2⟨x,Bkx⟩

x2
2 + δ⟨x,B2x⟩+

∑n
k=1(δv2k)

2⟨x,Bkx⟩

x2
3 + δ⟨x,B3x⟩+

∑n
k=1(δv3k)

2⟨x,Bkx⟩

x2
n + δ⟨x,Bnx⟩+

∑n
k=1(δvnk)

2⟨x,Bkx⟩

allocation
vector

direct
influence

indirect
influence

final
outcome

E[squared distance to
the target outcome]

independence of
link formation

Figure 4: Illustration of second-order uncertainty generation in network. For simplicity, here
we assume that z = 0.
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By summing the squared distances for all agents, we obtain

E
[
||(I+ δG+ δ2G2)x− z||2

]
= ⟨x,x⟩+

n∑
i=1

wi⟨x,Bix⟩ − 2⟨z,x⟩+ ⟨z, z⟩, (9)

where wi = δ+δ2
∑n

k=1 v
2
ki > 0. The above expression is linear in each Bi, as in expression (4)

in the main model without the higher-order consideration. Therefore, the adversarial Nature’s

choice of the worst-case scenario exhibits the rank-1 property for all agents. Consequently, if

the entries xi and xj chosen by the DM have the same signs, the covariance between i and j

must be positive. Conversely, if the signs are opposite, the covariance between i and j must

be negative. The following proposition summarizes this result.

Proposition 4 With the higher-order consideration with the objective function (8), there

exists a unique worst-case scenario B∗
i for each agent i ∈ N , and it is a rank-1 matrix.

We conclude this subsection by noting that for k-th order interaction considerations with

k ≥ 3, linearity no longer hold, even under the assumption of independent link formation.

Specifically, even with independent link formation, , correlations among influences toward

agent 1 can still arise. Now, consider walks of length 4, such as the walk (3, 2, 1, 2, 1) and

the walk (4, 2, 1, 2, 1), which differ only in the initial agent. In this case, the correlation

between the influences G23 and G24 may introduce non-linear effect. Consequently, the rank-

1 property and uniqueness of the worst-case scenario may not hold. We leave the analysis of

higher-order interactions and robust intervention design for future research.

6 Conclusion

This paper explores the problem of robust intervention in networks, focusing on a DM’s

interaction with agents under uncertainty. We introduced a framework that accounts for

adversarial uncertainty, modeled by the choices of a strategic player referred to as Nature.

By considering the worst-case scenario, the model provides a robust optimization strategy

that ensures the DM can still achieve effective interventions, even when lacking precise

information about the network’s structure.

Key findings include the characterization of the DM’s unique robust intervention strat-

egy and the identification of Nature’s optimal adversarial response. We find that, under

certain mind conditions, the worst-case scenario is uniquely determined, enabling the DM to

optimize network interventions even in the face of significant uncertainty. Furthermore, we

extend the model to address cases involving higher-order interactions and partial informa-

tion, demonstrating the versatility of the framework.
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Our model contributes to the literature on robust optimization, network games, and

robust mechanism design by offering a structured approach for decision-making in uncertain

environments. Future work could expand this model to incorporate dynamic changes in

network structures or explore the implications of different types of the DM’s objectives and

the corresponding adversarial behavior from Nature.

We note that the current setting can be extended to the graphon approach introduced

by Parise and Ozdaglar (2023), where the adjacency matrix is represented by a graphon

(a kernel operator) W : [0, 1]2 → R. The uncertainty set for the adversarial Nature can

be similarly defined, and the rank-1 property of the worst-case scenario is preserved. This

extension allows the current theory to benefit from the continuity of the graphon approach,

enabling applications that we leave for future research on robust intervention in networks.
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A Proofs

Proof of Theorem 1

Proof. We first prove the duality (5) in Theorem 1. To this end, we introduce the following

non-compact minimax theorem (Ha, 1981):

Theorem 4 Let X, Y be nonempty convex sets, each in a Hausdorff topological vector space,

and let f be a real-valued function defined on X × Y such that (a) for each y ∈ Y , f(x, y)

is lower semi-continuous and quasi-convex on X, and (b) for each x ∈ X, f(x, y) is upper

semi-continuous and quasi-concave on Y . Suppose that there exists a non-empty compact set

H ⊂ X and a non-empty compact convex set K ⊂ Y such that

inf
x∈X

sup
y∈Y

f(x, y) ≤ inf
x/∈H

max
y∈K

f(x, y). (A.1)

Then, it follows that

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y). (A.2)

Let X = Rn and Y = B in our model. We can consider K = Y = B because B is compact

and convex. Then, condition (A.1) in the above minimax theorem holds for any compact

H ⊂ Rn. Consequently, property (A.2) follows, which proves the first part of Theorem 1.

We now prove the second part of Theorem 1. We solve Nature’s dual problem (DP) by

applying the backward induction principle. In the problem, Nature makes a decision, and

then the DM decides. Recall that f(x,B) can be rewritten as

f(x,B) =
1

2

(
⟨x,Mx⟩+ ⟨x,Bx⟩+ ⟨x,Cx⟩ − 2⟨ψ0 + ψ,x⟩+ ||z||2 + ||C

1
2x0||2

)
=

1

2

(
⟨x,Hx⟩ − 2⟨φ,x⟩+ ||z||2 + ||C

1
2x0||2

)
, (A.3)

where H = M+B+C and φ = ψ0+ψ. Note that f(x,B) is convex in x. Hence, for a given

B, the DM’s optimal choice of x must solve the first-order condition, ∂f(x,B)
∂x

= Hx−φ = 0.

Hence, the best response of the DM, xBR(B), as a function of B, is xBR(B) = H−1φ. Given

the best-response function, xBR(B), Nature’s objective is to maximize the following with

constraint B ∈ B:

f(xBR(B),B) = ⟨xBR(B),HxBR(B)⟩ − 2⟨φ,xBR(B)⟩+ ||z||2 + ||C
1
2x0||2

= −⟨φ,H−1φ⟩+ ||z||2 + ||C
1
2x0||2. (A.4)

Put differently, Nature’s objective is to minimize ⟨φ,H−1φ⟩ under the constraint B ∈ B.
We now state and prove that ⟨φ,H−1φ⟩ is convex in B:

Lemma 1 The map B ∈ ⊗n
i=1Bi 7→ ⟨φ, (M+B+C)−1φ⟩ is convex.
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Proof of Lemma 1. Let B,B′ ∈ ⊗n
i=1Bi. For each t ∈ [0, 1], letKt = M+(1−t)B+tB′+C.

Then, it suffices to show that ⟨φ,K−1
t φ⟩ is convex in t (i.e., ⟨φ,K−1

t φ⟩ ≥ 0).

To calculate
d2K−1

t

∂t2
, we first find that by the product rule,

0 =
dI

dt
=
∂K−1

t Kt

dt
=
dK−1

t

dt
Kt +K−1

t

dKt

dt
,

which implies

dK−1
t

dt
= −K−1

t

dKt

dt
K−1

t . (A.5)

By expression (A.5), we have

dK−1
t

dt
= −K−1

t (B′ −B)K−1
t ,

d2K−1
t

dt2
= −dK

−1
t

dt
(B′ −B)K−1

t −K−1
t (B′ −B)

dK−1
t

dt

= 2K−1
t (B′ −B)K−1

t (B′ −B)K−1
t .

Let ρ = (B′ −B)K−1
t φ. Then, we have

d2

dt2
⟨φ,K−1

t φ⟩ = 2⟨φ,K−1
t (B′ −B)K−1

t (B′ −B)K−1
t φ⟩

= 2⟨(B′ −B)K−1
t φ,K−1

t (B′ −B)K−1
t φ⟩

= 2⟨ρ,K−1
t ρ⟩.

Since Kt is positive definite, K−1
t is also positive definite. Thus, ⟨ρ,K−1

t ρ⟩ ≥ 0, and so we

obtain the desired convexity.

By the convexity in Lemma 1, B∗ =
∑n

i=1B
∗
i is optimal for problem (DP) if and only if

d

dt

∣∣∣∣
t=0

⟨φ, (M+ (1− t)B∗ + tB+C)−1φ⟩ ≥ 0 (A.6)

for any B =
∑n

i=1Bi for some Bi ∈ Bi. To evaluate the derivative, using (A.5), we find

d

dt

∣∣∣∣
t=0

⟨φ, (M+ (1− t)B∗ + tB+C)−1φ⟩

= −⟨φ, (M+B∗ +C)−1(B−B∗)(M+B∗ +C)−1φ⟩

= −⟨(M+B∗ +C)−1φ, (B−B∗)(M+B∗ +C)−1φ⟩

= −⟨x∗(B∗), (B−B∗)x∗(B∗)⟩,

where xBR(B
∗) = (M+B∗ +C)−1φ. Notice that xBR(B

∗) is the DM’s best response to B∗

in the dual problem (DP). Thus, showing expression (A.6) is equivalent to prove that

⟨xBR(B
∗),BxBR(B

∗)⟩ ≤ ⟨xBR(B
∗),B∗xBR(B

∗)⟩ for all B ∈ B. (A.7)

Recall that Nature’s objective is to maximize f(x,B) in expression (A.3):

f(x,B) =
1

2

(
⟨x,Mx⟩+ ⟨x,Bx⟩+ ⟨x,Cx⟩ − 2⟨φ,x⟩+ ||z||2 + ||C

1
2x0||2

)
. (A.8)
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Note that the only term that depends on Nature’s choice B is ⟨x,Bx⟩. Hence, the optimality

condition (A.7) means that B∗ is Nature’s best response to x∗(B∗). Since xBR(B
∗) is the

best response to B∗ by construction, we have established the following claim:

Claim 1 B∗ is optimal solution to Nature’s dual problem (DP) if and only if (xBR(B
∗),B∗)

is a Nash equilibrium.

To complete the proof of the theorem, it remains to prove the following claim:

Claim 2 x∗ = xBR(B
∗) for any optimal B∗ for the dual problem (DP).

To see why Claim 2 yields the second part of Theorem 1, suppose that (x∗,B∗) is a Nash

equilibrium. B∗ is a solution to the dual problem (DP) by Claim 1. Since x∗ is a best response

to B∗, x∗ = x∗ by Claim 2. Conversely, suppose that B∗ is an optimal solution to the dual

problem (DP) and let x∗ = x∗. Claim 2 states that x∗ = xBR(B
∗) is a best response to B∗.

Also, the optimality of B∗ to the dual problem (DP) implies that B∗ is a best response to

x∗. Thus, (x∗,B∗) is a Nash equilibrium by Claim 1.

Now to show Claim 2, it suffices to show the following claim:

Claim 3 Let ξ : B → R be a function defined as ξ(B) = f(x∗
BR(B

∗),B), where B∗ is an

optimal solution to problem (DP). Then, B∗ returns the maximum value of function ξ.

Note that Claim 3 is equivalent to show that (x∗
BR(B

∗),B∗) is a Nash equilibrium, which is

already established in Claim 1.

Finally, observe that

max
B∈B

f(x∗,B) = min
x∈Rn

max
B∈B

f(x,B) by definition of x∗

= max
B∈B

min
x∈Rn

f(x,B) by the first part of Theorem 1

= f(x∗
BR(B

∗),B∗) by definition of B∗

= max
B∈B

f(x∗
BR(B

∗),B) by Claim 3.

Consequently, the uniqueness of x∗ implies that x∗ = x∗
BR(B

∗).

Proof of Theorem 2

Proof. We first show all entries of B∗
i are extreme values. Since |Bi| ≤ vijvik, we have

⟨x∗,Bix
∗⟩ =

n∑
l=1

(Bi)ll(x
∗
l )

2

︸ ︷︷ ︸
constant

+2
n∑

j<k

(Bi)jkx
∗
jx

∗
k ≤

n∑
l=1

(Bi)ll(x
∗
l )

2 + 2
n∑

j<k

(vijvik) |x∗j | |x∗k|.
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Hence, it suffices to find that B∗
i achieves the upper bound of ⟨x∗,Bix

∗⟩. Define B∗
i as

(B∗
i )jk =

v2
ij if j = k,

s(x∗j) s(x
∗
k)vijvik if j ̸= i,

Then, B∗
i clearly achieves the upper bound value.

We now show that B∗
i is a rank-1 matrix. To show that B∗ is a rank-1 matrix, it suffices

to show that any kth row of B∗
i with k ≥ 2 is a multiple of the first row of B∗

i . Without loss

of generality, let us assume that i = 1. Then, the kth row (B∗
1)k is

(B∗
1)k = (s(x∗

k)s(x
∗
1)v1kv11, s(x

∗
k)s(x

∗
2)v1kv12, . . . , s(x

∗
k)s(x

∗
n)v1kv1n)

=
s(x∗

1)

s(x∗
1)

s(x∗
k)

s(x∗
k)

v1k

v11

v11

v1k

(s(x∗
k)s(x

∗
1)v1kv11, s(x

∗
k)s(x

∗
2)v1kv12, . . . , s(x

∗
k)s(x

∗
n)v1kv1n)

=

(
s(x∗

k)

s(x∗
1)

v1k

v11

)
︸ ︷︷ ︸
=κ with κ ̸= 0

(s(x∗
1)s(x

∗
1)v11v11, s(x

∗
1)s(x

∗
2)v11v12, . . . , s(x

∗
1)s(x

∗
n)v11v1n)

= κ(B∗
1)1.

Therefore, B1 is a rank-1 matrix.

Furthermore, since the trace ofB∗
i is the sum of eigenvalues, its unique non-zero eigenvalue

must be equal to the sum of variances, which is strictly positive. This also implies that

B∗
i ∈ Bi as B

∗
i is positive semi-definite.

Note that the construction of B∗
i is independent of specific values of x∗. In addition, by

construction for the off-diagonal entries of B∗
i , the eigenvector corresponding to the unique

non-zero eigenvalue is q = (q1, . . . , qn)
T, where qk = s(yk)vik for all k. Hence, q is in the

same orthant with x∗.

We now show that Nature’s optimal choices of rank-1 covariance matrix Bi for agent

i ∈ N can be realized under the symmetry assumption on the network G. Note that for

given i, j ∈ N , the symmetry assumption, Gij = Gji, implies that mij = mji, vij = vji, and

Uij = Uji. Due to the uniqueness of B∗
i for i, we first construct B∗

i for i ∈ N that achieves

the upper bound of Nature’s objective function. Let X be a random variable of mean zero

and variance one (e.g., the standard normal random variable). Define Uij = s(x∗i )s(x
∗
j)vijX

for i, j ∈ N . With this definition, we find that Var(Uij) = v2
ij for all i, j ∈ N . Let B∗

i be the

matrix defined as (B∗
i )jk = E[UijUik]. Then, as in the proof without symmetry assumption,

we see that (B∗
i ) is Nature’s optimal choice agent i under the variance constraint.

Furthermore, we find that for each i, j ∈ N , Uij = s(x∗i )s(x
∗
j)vijX = s(x∗j)s(x

∗
i )vjiX =

Uji, which implies that Gij = mij +Uij = mji +Uji = Gji. Therefore, the theorem holds

under the symmetric assumption about G.
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Proof of Proposition 1

Proof. The proof follows from a direct calculation:

∂f(x∗(B),B)

∂B

∣∣∣
B=B∗

=
∂f(x∗(B),B)

∂x

∂x∗

∂B

∣∣∣
B=B∗

+
∂f(x∗(B),B)

∂B

∣∣∣
B=B∗︸ ︷︷ ︸

= 0 by the envelope theorem

= x∗(B∗)⊗ x∗(B∗).

Therefore, the proposition is proven.

Proof of Proposition 2

Proof. Since f(x∗,B∗) = ⟨x∗,B∗x∗⟩, where B∗ =
∑n

i=1B
∗
i and (B∗

i )jk = vijviks(xj)s(xk),

we have

f(x∗,B∗) = ⟨x∗,B∗x∗⟩ =
n∑

i=1

⟨x∗,B∗
ix

∗⟩

=
n∑

i=1

xj

( ∑
1≤j,k≤n

vijvik s(xj)s(xk)

)
xk

=
n∑

i=1

( ∑
1≤j,k≤n

vijvik |xj||xk|

)
.

Consequently, the partial derivative of f(x∗,B∗) with respect to vij is

∂f(x∗,B∗)

∂vij

= 2

(
n∑

k=1

vik |xj||xk|

)
.

Therefore, the proposition is proven.

Proof of Proposition 3

Proof. We first find a closed-form solution of x∗ with the parameteric assumptions. Then,

calculate the threshold v. Under the assumption of the parameters, we find that

M = 2

[
m2 m

m 1

]
and B = 2

[
v2 ρ1+ρ2

2
ρ1+ρ2

2
1

]
.

We first guess that x∗ ∈ R2
++. Then, ρ

∗
1 = ρ∗2 = v, which implies that

x∗ = (M+B∗ + cI)−1 φ =

[
m2 + v2 + c

2
m+ v

m+ v 2 + c
2

]−1 [
m

1

]
=

1

△

[
(1 + c

2
)m− v

v2 + c
2
−mv

]
,
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where △ is the determinant of (M+B∗ + cI) that is strictly positive. x∗
1 ≥ x∗

2 if and only if

− v2 − (1−m)v +
(
m+

c

2
m− c

2

)
≥ 0

⇐⇒ −
(
v −

(
(m− 1)

2

))2

+

(
m− 1

2

)2

+
(
m+

c

2
(m− 1)

)
︸ ︷︷ ︸

>0 if m ≥ 1

≥ 0.

Note that the maximum value of the last expression is strictly greater than 0 if m ≥ 1.

Hence, it suffices to show that the last expression at v = 0 is strictly greater than 0 as the

expression is strictly concave and quadratic in v. When v = 0, the expression has the value(
m+ c

2
(m− 1)

)
, which is strictly greater than 0 if m ≥ 1. Consequently, there exists v > 0

such that x∗1 ≥ x∗2 if and only if v ≤ v(m) by the intermediate value theorem.

The closed-form expression of v(m) is

v(m) =
1

2

(
(m− 1) +

√
2c(m− 1) + (m+ 1)2

)
,

and its first and second derivatives are
∂v(m)

∂m
=

1

2
+

(m+ c+ 1)

2
√

2c(m− 1) + (m+ 1)2
> 0,

∂2v(m)

∂m2
= − c(c+ 4)

2 (2c(m− 1) + (m+ 1)2)3/2
< 0,

which prove that v(m) is strictly increasing and concave. Thus, the proposition is proven.

Proof of Theorem 3

We state and prove a slightly generalized version. Recall that PDn and PSDn denote the sets

of all n×n real symmetric positive definite and positive semi-definite matrices, respectively.

Theorem 5 Let B ∈ PDn, I be a proper (possibly empty) subset of N = {1, ..., n}, bi ∈ R
for all i ∈ I, and bn+1 > 0. Then, for any intervention x ∈ Rn+1 with xjxn+1 ̸= 0 for some

j ∈ {1, ..., n} \ I, the problem

maximize ⟨x,Bx⟩ over {B ∈ BPSD

B,b |Bi,n+1 = bi for all i ∈ I} (A.9)

has a unique solution (unless the latter feasible set is empty).

Theorem 3 is clearly a special case of Theorem 5 with I = ∅. We shall now prove Theorem 5.

Proof. For a given matrix B ∈ Rn×n, let B ∈ R(n+1)×(n+1) denote a symmetric and extended

matrix of B having B as its principal submatrix. For each v = (v1, ...,vn)
T ∈ Rn, let

v = (v1, . . . ,vn,vn+1)
T ∈ Rn+1 denote the extended vector of v having v as its subvector;

that is, vk = vk for all 1 ≤ k ≤ n. By abusing notation, we denote v by v = (vT,vn+1)
T. For a

given matrix A, we let Null(A) denote the Null space of A; that is, Null(A) = {x |Ax = 0}.
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Let V be an affine subspace of Rd that inherits the usual topology of Rd; that is, A ⊂ V

is open in V if and only if there exists an open set A in Rd such that A = A ∩ V . We say

that a compact convex set A ⊂ V is strictly convex in V if A has nonempty interior in V ,

and for any distinct x and x′ in A, x+x′

2
is also contained in the interior of A.

Given B ∈ PSDn and b > 0, we define BB,b as the set of all extended matrices of B

having the (n+ 1)-th row and (n+ 1)-th column entry by b:

BB,b = {B ∈ R(n+1)×(n+1) |B is symmetric, Bij = Bij for all 1 ≤ i, j ≤ n,B(n+1)(n+1) = b},

BPSD

B,b = BB,b ∩ PSDn+1,

BPD

B,b = BB,b ∩ PDn+1.

Theorem 5 will be shown as a consequence of the following lemma.

Lemma 2 For any B ∈ PDn and b > 0, the set

X PSD
B,b = {b ∈ Rn |bi = Bi,n+1 for all i = 1, ..., n for some B ∈ BPSD

B,b } (A.10)

is a strictly convex and compact subset of Rn.

Proof. It is clear that X PSD
B,b is compact and convex. For B ∈ PDn and b > 0, by Sylvester’s

criterion (Meyer, 2010),B ∈ BB,b is positive semi-definite if and only if det(B) ≥ 0. Moreover,

B ∈ BB,b is positive definite if and only if det(B) > 0. This shows that

X PSD
B,b = {b ∈ Rn |bi = Bi,n+1 for all i ∈ N for some B ∈ BB,b with det(B) ≥ 0},

and the interior of the set X PSD
B,b is given by

X PD
B,b = {b ∈ Rn |bi = Bi,n+1 for all i ∈ N for some B ∈ BB,b with det(B) > 0}

= {b ∈ Rn |bi = Bi,n+1 for all i = 1, ..., n for some B ∈ BPD

B,b},

which is nonempty because 0 ∈ X PD
B,b . Let b1,b2 ∈ X PSD

B,b with b1 ̸= b2. We need to show
b1+b2

2
∈ X PD

B,b . For j = 1, 2, let B
j ∈ BPSD

B,b such that bj
i = B

j

i,n+1 for all i = 1, ..., n. Then,

the claim b1+b2

2
∈ X PD

B,b is equivalent to det(B
1
+B

2

2
) > 0. By a way of contradiction, suppose

that this is false. Then, det(B
1
+B

2

2
) = 0, i.e., B

1
+B

2

2
is not positive definite, which is the case

if and only if Null(B
1
) ∩ Null(B

2
) ̸= {0}. For any z ∈ Null(B

1
) ∩ Null(B

2
) with z ̸= 0,

we claim that zn+1 = 0. To prove this, suppose zn+1 ̸= 0 and B
j
z = 0 for j = 1, 2. Since

B
j
z =

∑n+1
k=1 zkB

j

k, where B
j

k denotes the kth column of B
j
, the equation

∑n+1
k=1 zkB

j

k = 0 ∈
Rn+1 in particular yields, by ignoring the last (n+1)th row,

∑n
k=1 zkBk + zn+1b

j = 0 ∈ Rn,

j = 1, 2. However, this yields b1 = −
∑n

k=1
zk

zn+1
Bk = b2, a contradiction. Hence zn+1 = 0,

but then
∑n

k=1 zkBk = 0 implies z = 0 due to the assumption B ∈ PDn. We conclude

Null(B
1
) ∩ Null(B

2
) = {0}, which yields det(B

1
+B

2

2
) > 0, as desired.

We now prove the theorem. As the only unknown entries in B are (Bi,n+1)i∈{1,...,n}\I , the
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problem (A.9) is equivalent to max
B∈BPSD

B,b

∑
i∈{1,...,n}\I

xixn+1Bi,n+1. The set of feasible variables

(Bi,n+1) ∈ Rn−|I| is equal to the projection of the slice set X PSD
B,b ∩{x ∈ Rn |xi = bi for all i ∈

I} onto {(xi)i∈{1,...,n}\I} ∼= Rn−|I|. Since the objective function is nonzero and linear in the

variable (Bi,n+1), and any slice of a strictly convex set is also strictly convex, the theorem

follows from Lemma 2.

Proof of Proposition 4

Proof. For simplicity, we prove the proposition by assuming that the mean influence of the

link Gij is zero for all i, j ∈ N . Then, we provide a general proof without the assumption.

For each i ∈ N , we find that

|(I+ δG+ δ2G2)ix− zi|2 =
∣∣∣xi + δ

n∑
j=1

Gijxj + δ2
∑

1≤k,l≤n

GikGklxl − zi

∣∣∣2
= x2i +

(
δ

n∑
j=1

Gijxj

)2

+

(
δ2

∑
1≤k,l≤n

GikGklxl

)2

+ z2i

+ 2xi

(
δ

n∑
j=1

Gijxj

)
+ 2xi

(
δ2

∑
1≤k,l≤n

GikGklxl

)
− 2xizi

+ 2

(
δ

n∑
j=1

Gijxj

)(
δ2

∑
1≤k,l≤n

GikGklxl

)

− 2zi

(
δ

n∑
j=1

Gijxj

)
− 2zi

(
δ2

∑
1≤k,l≤n

GikGklxl

)
. (A.11)

We then investigate the expectation of each term in expression (A.11). First, we find that

E

[( ∑
1≤k,l≤n

GikGklxl

)]
= 0,

E

[(
n∑

j=1

Gijxj

)( ∑
1≤k,l≤n

GikGklxl

)]
= 0,

E

[(
n∑

j=1

Gijxj

)]
= 0,

E

[( ∑
1≤k,l≤n

GikGklxl

)]
= 0.
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Second, E

[(∑n
j=1Gijxj

)2]
= ⟨x,Bix⟩ as in the main model. Third, we observe that

E

( ∑
1≤k,l≤n

GikGklxl

)2
 = E

[
(
∑

1≤k,l,s,t≤n

GikGklGisGstxlxt)

]
=

∑
k ̸=i,s ̸=i,l,t

E [GikGis] E [GklGst]xlxt

=
∑
k ̸=i,l,t

E
[
G2

ik

]
E [GklGkt]xlxt

=
n∑

k=1

v2
ik⟨x,Bkx⟩.

Thus, we obtain expression Figure 4 in the main text:

E
[
|(I+ δG+ δ2G2)ix− zi|2

]
= x2i + E

(δ n∑
j=1

Gijxj

)2

+

(
δ2

∑
1≤k,l≤n

GikGklxl

)2
+ z2i

= x2i + δ⟨x,Bix⟩+ δ2
n∑

k=1

v2
ik⟨x,Bkx⟩+ z2i . (A.12)

Finally, by summing the squared distances for all agents, we obtain

E
[
||(I+G+G2)x− z||2

]
= E

[
|(I+ δG+ δ2G2)ix− zi|2

]
=

n∑
i=1

(
x2i + δ⟨x,Bix⟩+ δ2

n∑
k=1

v2
ik⟨x,Bkx⟩+ z2i

)

= ⟨x,x⟩+
n∑

i=1

wi⟨x,Bix⟩ − 2⟨z,x⟩+ ⟨z, z⟩, (A.13)

where wi = δ + δ2
∑n

k=1 v
2
ki > 0 as in expression (9) in the main text.

Since the DM’s objective function (A.13) is linear in each Bi, the rank-1 property and the

uniqueness of B∗
i are held by Theorem 1 and Theorem 2. Therefore, the worst-case scenario

B∗ =
∑n

i=1 B
∗
i is unique.

We now prove the proposition without the assumption. To economize notation, without

loss of generality, we let δ = 1 because it does not affect the linearity of the DM’s objective

function. We let G = E[G] and write G = G + U. We denote by mi and mi the ith row

vector and column vector of G, respectively. Recall that Mi = mi⊗mi, and E[UiU
T
i ] = Bi.

Since we assume that Gii = 0, we have Uii = mii = 0. We calculate that for each i ∈ N ,

E

( n∑
j=1

Gijxj

)2
 = E

[(
(mi +Ui)

Tx
)2]

= ⟨x,Bix⟩+ ⟨x,Mix⟩.
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In addition, it follows that for each i ∈ N ,

E

( ∑
1≤k,l≤n

GikGklxl

)2
 = E

[ ∑
1≤k,l,s,t≤n

GikGklGisGstxlxt

]
=

∑
1≤l,t≤n

∑
k ̸=i,s ̸=i

E [GikGis] E [GklGst]xlxt

=
∑

1≤l,t≤n

∑
k ̸=i,s ̸=i

(E[UikUis] +mikmis) E([UklUst] +mklmst)xlxt.

We find the following useful expressions for each i ∈ N :∑
1≤l,t≤n

∑
k ̸=i,s ̸=i

E[UikUis] E [UklUst]xlxt =
∑
k ̸=i

∑
l,t

E[UikUik] E [UklUkt]xlxt =
∑
k

v2
ik⟨x,Bkx⟩,∑

1≤l,t≤n

∑
k ̸=i,s ̸=i

mikmis E [UklUst]xlxt =
∑
k

m2
ik⟨x,Bkx⟩,∑

1≤l,t≤n

∑
k ̸=i,s ̸=i

mklmst E[UikUis]xlxt =
∑
l,t

⟨xlml,Bi(xtm
t)⟩ = ⟨Gx,BiGx⟩,∑

1≤l,t,k,s≤n

mikmismklmstxlxt =
∑
l,t

(G
2

ilxl)(G
2

itxt) = (G
2
x)2i .

Then, we obtain that for each i ∈ N ,

E

( ∑
1≤k,l≤n

GikGklxl

)2
 =

n∑
k=1

(v2
ik +m2

ik)⟨x,Bkx⟩+ ⟨Gx,BiGx⟩+ (G
2
x)2i ,

E

[
n∑

j=1

Gijxj

]
=

n∑
j=1

mijxj = ⟨mi,x⟩ = (Gx)i,

E

[ ∑
1≤k,l≤n

GikGklxl

]
=
∑
k,l

(mikmkl + E [UikUkl])xl = (G
2
x)i + 0 = (G

2
x)i,

E

[ ∑
1≤j,k,l≤n

GijGikGklxjxl

]
=
∑

1≤j,l≤

∑
k ̸=i

E [GijGik] E [Gkl]xjxl

=
∑

1≤j,l,k≤n

(E [UijUik] +mijmik)mklxjxl

=
n∑

l=1

(
⟨xlml,Bix⟩+ ⟨xlml,Mix⟩

)
= ⟨Gx,Bix⟩+ ⟨Gx,Mix⟩.

Thus, we combine the above expressions and obtain that for each i ∈ N ,

E
[
|(I+G+G2)ix− zi|2

]
= ⟨x,Bix⟩+

n∑
k=1

(v2
ik +m2

ik)⟨x,Bkx⟩+ ⟨Gx,BiGx⟩+ 2⟨Gx,Bix⟩+ ⟨x,Mix⟩+ (G
2
x)2i

+ 2⟨Gx,Mix⟩+ 2⟨ximi,x⟩+ 2xi(G
2
x)i + x2i − 2⟨zimi,x⟩ − 2zi(G

2
x)i − 2zixi + z2i .
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We now let αk =
∑n

i=1(v
2
ik +m2

ik). By summing over i, it follows that

E
[
||(I+G+G2)x− z||2

]
=

n∑
i=1

(
αi⟨x,Bix⟩+ ⟨(G+ I)x,Bi(G+ I)x⟩

)
+Q(x), (A.14)

where Q(x) is a quadratic function of x not involving the uncertainty matrix (Bi)i for any

i ∈ N . As such, we can consider Q as an additional cost part of the DM’s objective function.

It is straightforward to see that the DM’s objective function (A.14) is still a linear function of

(Bi)i as before. Consequently, we conclude that when (B∗
1, . . . ,B

∗
n) is Nature’s best response

with respect to a given x having no zero entry, its ith component B∗
i is uniquely determined

as a rank-1 matrix if and only if the following nondegeneracy condition holds:

αixjxk +
(
(G+ I)x

)
j

(
(G+ I)x

)
k
̸= 0 for all 1 ≤ j < k ≤ n. (A.15)

Therefore, the proposition is proven.
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B Note on Property B

Recall that the objective function f : Rn × B → R is defined as

f(x,B) =
1

2

(
⟨x,Mx⟩+ ⟨x,Bx⟩+ ⟨x,Cx⟩ − 2⟨φ,x⟩+ ||z||2 + ||C

1
2x0||2︸ ︷︷ ︸

constant

)
,

where φ = ψ0 + ψ with ψ0 = Cx0 and ψ =
∑n

i=1 zimi. Define gi(x) = maxBi∈Bi

1
2
⟨x,Bix⟩

for each i ∈ N , which is convex and has its minimum at 0. Let g(x) =
∑n

i=1 gi(x). Let x
∗

be defined as

x∗ = argmin
x∈Rn

max
B∈B

f(x,B) = argmin
x∈Rn

[
g(x) +

1

2
⟨x,Dx⟩ − ⟨φ,x⟩+ constant

]
,

where D = M+C. x∗ is determined by the first-order condition, φ ∈ Dx∗ + ∂g(x∗), where

∂g(x) denotes the set of subgradients of g at x, defined by

∂g(x) = {u ∈ Rn | g(y)− g(x) ≥ ⟨u,y − x⟩ for all y ∈ Rn}.

Therefore, it follows that x∗ has a zero entry if and only if

φ ∈ Z = {Dx+ ∂g(x) |x has a zero entry}, (B.1)

which is equivalent to Property B in the main text.

Roughly speaking, Property B requires that Z is small in Rn. Z is small if and only if

maxi,j v
2
ij is relatively smaller than the eigenvalues of D = M+C. To illustrate these points,

consider a network of two agents. Then, for each i, the subgradient is calculated as

∂gi(x) =

{x1(v2
i1, tvi1vi2)

T | t ∈ [−1, 1]} if x1 ̸= 0, x2 = 0,

{x2(tvi1vi2,v
2
i2)

T | t ∈ [−1, 1]} if x1 = 0, x2 ̸= 0.

Figure 5 illustrates Z under the assumption of M+C = kI for some k > 0 for simplicity. In

the left figure, the set {x has a zero entry} is represented as the union of two colored lines.

The blue line represents the set of x with x1 = 0, and the red line represents the set of x

with x2 = 0. Consider a set-valued function D + ∂g : R2 → R2 defined as (D+ ∂g) (x) =

D(x) + ∂g(x). In the right figure in Figure 5, the blue region is the image of the blue line

{x ∈ R |x1 = 0}, and the red region is the image of the red line {x ∈ R |x2 = 0}. Property B
requires that φ is not contained in either of the two regions in the right figure. Since k > 0,

the union of the two regions is not only strictly contained in R2, but also strictly decreases

in size as k increases. The union of the two regions is closed. Moreover, the measure of the

union is nonzero. Consequently, Property B does not hold generically, and the interior of the

complement of Z is not empty.

We now explain how the size of Z is determined. Without loss of generality, let us consider

the size of the red region in the right figure. For a given value of x1 on the horizontal axis

in the left figure, the subgradient is a vertical segment in the red region in the right figure.
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x1

x2

0
{x has a zero entry}

x1

x2

φ /∈ Z
Property B:

Figure 5: Illustration of Z as an image of Dx+ ∂g(x)

For example, at x = (1, 0), Dx+ ∂g(x) = {(k+v2
i1, tvi1vi2)

T | t ∈ [−1, 1]}. The height of the
segment is determined by the values of vi1 and vi2. Thus, when other parameters are equal,

Property B holds if the size of the variances becomes sufficiently small. Similarly, for given

values of the variance, Property B holds if k is sufficiently large. Furthermore, it follows that

for a given ε > 0, there exists δ > 0 such that if
maxi,j v

2
ij

smallest eigenvalue of D
< δ, then there exists a

modified target z̃ of z such that |z̃− z| < ε, and the corresponding optimal intervention x∗

with respect to the new target z̃ has no zero entry.
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