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Abstract. The fundamental connection between stochastic differential equa-

tions (SDEs) and partial differential equations (PDEs) has found numerous ap-

plications in diverse fields. We explore a similar link between stochastic calculus

and combinatorial PDEs on graphs with Hodge structure, by showing that the

solution to the Hodge-theoretic Poisson’s equation on graphs allows for a stochas-

tic integral representation driven by a canonical time-reversible Markov chain.

When the underlying graph has a hypercube structure, we further show that the

solution to the Poisson’s equation can be fully characterized by five properties,

which can be thought of as a completion of the Lloyd Shapley’s four axioms.
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1. Introduction and our contribution

Consider the graph G = (Ξ, E), where Ξ is a finite set of vertices and E is the set

of (forward- or positively- oriented) edges. To begin, we define the weighted inner

product space of functions `2(Ξ), `2(E). Let ρ and λ be strictly positive weight

functions on Ξ and E, respectively, and set λ(T, S) = λ(S, T ) by convention for

any (S, T ) ∈ E. Note that at most one of (S, T ) and (T, S) is in E for S, T ∈ Ξ.

Denote by `2
ρ(Ξ) the space of functions Ξ→ R equipped with the inner product

(1.1) 〈u, v〉ρ :=
∑
S∈Ξ

ρ(S)u(S)v(S).
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Denote by `2
λ(E) the space of functions E → R equipped with the inner product

(1.2) 〈f, g〉λ :=
∑

(S,T )∈E

λ(S, T )f(S, T )g(S, T )

with the Hodge structure f(T, S) := −f(S, T ) for the reverse-oriented edge (T, S).

Thus every f ∈ `2
λ(E) is defined not only on all the “positively oriented” edges, i.e.,

the edges in E, but also on their “negatively oriented” reverse. For S, T ∈ Ξ, we

declare there exists a (forward- or reverse-) edge (S, T ) if and only if λ(S, T ) > 0.

Then we say that the weighted graph G is connected if for any S, T ∈ Ξ there exists

a chain of (forward- or reverse-) edges
(
(Sk, Sk+1)

)n−1

k=0
with S0 = S, Sn = T .

Next, we endow G with a Hodge differential structure. For v ∈ `2
ρ(Ξ), define a

linear operator d: `2
ρ(Ξ)→ `2

λ(E), the gradient, by

(1.3) dv(S, T ) := v(T )− v(S).

The adjoint d∗, (negative) divergence, satisfies for all v ∈ `2
ρ(Ξ) and f ∈ `2

λ(E)

(1.4) 〈dv, f〉λ = 〈v, d∗f〉ρ.

To find the explicit formula for d∗, let (1S)S∈Ξ be the standard basis of `2(Ξ),

where 1S(T ) = 1 if T = S and otherwise 0. Then it is easy to see that

d∗f(S) =
〈1S, d∗f〉ρ
ρ(S)

=
〈d1S, f〉λ
ρ(S)

=
∑
T∼S

λ(T, S)

ρ(S)
f(T, S)(1.5)

where T ∼ S denotes λ(S, T ) > 0, i.e., S and T are adjacent. The graph Laplacian

is now defined by the operator d∗d. In this context, combinatorial Hodge decom-

position simply corresponds to the Fundamental Theorem of Linear Algebra:

(1.6) `2
ρ(Ξ) = R(d∗)⊕N (d), `2

λ(E) = R(d)⊕N (d∗),

where R(·), N (·) stand for the range and nullspace respectively.

The primary focus of this paper is the combinatorial Poisson’s equation:

(1.7) d∗dv = d∗f.

Our first main result is the stochastic integral representation of the solution v. Let

us first note that, while the weight ρ affects the divergence d∗ as seen in (1.5), it

has no effect on the solution to (1.7). We also observe uniqueness of the solution.
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Lemma 1.1. i) The solutions v to (1.7) do not depend on the choice of ρ.

ii) If the graph G is connected, any two solutions u, v to (1.7) differ by a constant.

On the other hand, the solution does depend on λ. In light of this lemma, we

will simply assume ρ ≡ 1 from now on. Now we introduce the stochastic integral

representation for the solution to (1.7). Let N0 = N∪{0}. Given an edge weight λ,

consider the canonical Markov chain (XU
n )n∈N0 on the state space Ξ with X0 = U ,

equipped with the transition probability pS,T from a state S to T defined by

pS,T =
λ(S, T )∑
U∼S λ(S, U)

if T ∼ S, pS,T = 0 if T 6∼ S.(1.8)

The Markov chain (1.8) is known to be time-reversible, which means that there

exists a stationary distribution π = (πS)S∈Ξ, satisfying

(1.9) πSpS,T = πTpT,S for all S, T ∈ Ξ.

One important implication is that every loop and its inverse have the same prob-

ability of being realized, that is (see, e.g., Ross [32])

(1.10) pS,S1pS1,S2 . . . pSn−1,SnpSn,S = pS,SnpSn,Sn−1 . . . pS2,S1pS1,S.

Let (Ω,F ,P) denote the probability space for the Markov chain. For each S, T ∈ Ξ

and ω ∈ Ω, let τS,T = τS,T (ω) ∈ N0 denote the first (random) time the Markov

chain
(
XS
n (ω)

)
n

visits T . Given a “marginal contribution measure” f ∈ `2(E), we

define the total contribution along the sample path ω traveling from S to T by

(1.11) ISf (T ) = ISf (T )(ω) :=

τS,T (ω)∑
n=1

f
(
XS
n−1(ω), XS

n (ω)
)
.

We can imagine that the space Ξ represents all possible project progress states,

and f(U, V ) represents the contribution value of a player/employee when the state

moves from U to a neighbor state V . Given that the project state has progressed

from S to T along the path ω, (1.11) represents the player’s total contribution

throughout the progression. In this case, the edge weight function λ determines

which direction the project is likely to take via (1.8).

Now we define the value function via the following stochastic path integral:

(1.12) V S
f (T ) :=

∫
Ω

ISf (T )(ω)dP(ω) = E[ISf (T )].
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V S
f (T ) represents a player’s expected total contribution if the state advances from

S to T , where f represents the player’s marginal contribution for each transition.

Our first main result is the following.

Theorem 1.2. Let f ∈ `2
λ(E) and let the Markov chain (1.8) be defined on a

weighted graph (G, λ). Then V S
f solves the Poisson’s equation

(1.13) d∗dV S
f = d∗f

on the connected component of G that contains the initial state S.

The fundamental connection between stochastic differential equations (SDEs)

and partial differential equations (PDEs) established by Kolmogorov, Feynman,

Kac, and many others has found numerous applications in diverse fields. The author

hopes that Theorem 1.2 will spark a similar link between stochastic calculus and

combinatorial PDEs on graphs with Hodge structure. In establishing this result,

the author notices with interest that the time-reversibility property of Markov

processes on graphs appears to play an analogous role to the martingale property

on Euclidean spaces. As we will see, the proof of Theorem 1.2 will be purely

combinatorial, with the time-reversibility (1.10) playing an important role.

We also note that Theorem 1.2 shows that when calculating the value function

Vf for a player whose marginal contribution is given by f , one can instead solve

the Poisson’s equation (1.7), which can be easily done using least squares solvers.

The solution to (1.7), on the other hand, can be approximated by simulating the

Markov chain (1.8) and calculating the contribution aggregator (1.12).

The following example in financial decision making will demonstrate an inter-

esting application and relevance of the framework we have introduced thus far.

Example 1.3 (Entrepreneur’s revenue problem). Let Ξ represent the project state

space in which the manager wishes to achieve the project completion state F ∈ Ξ.

Let v : Ξ → R denote the manager’s revenue, i.e., v(U) represents the manager’s

revenue if the project reaches the state U . Let [N ] = {1, ..., N} denote the employees

with their marginal contribution measures f1, ..., fN ∈ `2(E). Because it is her

contribution and share, the manager must pay fi(S, T ) to the employee i at each

state transition from S to T . Thus, the manager’s surplus in this single transition

is v(T )− v(S)−
∑

i fi(S, T ). Now the manager’s revenue problem is: What is the
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manager’s expected revenue if they begin at the initial project state (say O, where

v(O) = 0) and the manager’s goal is to reach the project completion state F?

Observe the answer is v(F )−
∑

i V
O
fi

(F ), where V O
fi

is defined by the stochastic

integral given the marginal contribution measure fi as in (1.12), for each i ∈ [N ].

(So if this is negative, the manager may decide not to begin the project at all.)

Furthermore, in the middle of the project, the manager may want to recalculate

her expected gain or loss. That is, suppose the current project status is T , and they

arrived at T via a specific path ω, and thus the manager has paid the payoffs — the

path integrals (1.11)— to the employees. The manager may now wish to calculate

the expected gain if she decides to proceed from T to F . This is now provided by

v(F )− v(T )−
∑
i

V T
fi

(F ),

and the manager can make decisions based on the expected revenue data. Finally,

Theorem 1.2 allows us to calculate V T
fi

in terms of the system of equations (1.13).

Next, in order to describe our second main result, we will focus our discussion on

the hypercube graph, or coalition game graph, with uniform weights ρ ≡ 1, λ ≡ 1:

(1.14) Ξ = 2[N ], E =
{(
S, S ∪ {i}

)
∈ Ξ× Ξ | S ⊆ [N ] \ {i}, i ∈ [N ]

}
,

where [N ] = {1, 2, ..., N} represents the players of the coalition games

GN = {v : 2[N ] → R | v(∅) = 0}.

Note that a coalition game v is simply a (value) function on the subsets of [N ],

where each S ⊆ [N ] represents a coalition of players in S, and v(S) represents the

value assigned to the coalition S, with the null coalition ∅ receiving zero value.

Notice each coalition S ⊆ [N ] can correspond to a vertex of the unit hypercube in

RN , and each edge is oriented in the direction of the inclusion S ↪→ S ∪ {i}.
For each i ∈ [N ], let di : `

2(Ξ)→ `2(E) denote the partial differential operator

(1.15) div
(
S, S ∪ {j}

)
=

dv
(
S, S ∪ {i}

)
if j = i,

0 if j 6= i.

div ∈ `2(E) encodes the marginal value contributed by player i to the game v.

Given v ∈ GN , Stern and Tettenhorst [39] defined the component game vi for each
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i ∈ [N ] as the unique solution in GN to the following form of Poisson’s equation

(1.16) d∗dvi = d∗div.

According to our first main result, Theorem 1.2, the component game value

vi(S) for each coalition S ⊆ [N ] can be interpreted as the player i’s expected total

contribution — thus her fair share — if the state advances from ∅ to S, where the

player i’s marginal contribution for each transition is defined by div. Now inspired

by the well-known Shapley axioms, which characterize the Shapley value vi([N ])

for every i ∈ [N ] (see Section 1.1 for details), our second main result will provide

an axiomatic characterization of the values vi(S) for every i ∈ [N ] and S ⊆ [N ].

That is, we will look for conditions that will completely determine the solutions to

(1.16). For this, let G =
⋃
N∈N GN . For i, j ∈ [N ] and S ⊆ [N ], define Sij ⊆ [N ] by

Sij =


S if S ⊆ [N ] \ {i, j} or {i, j} ⊆ S,

S ∪ {i} \ {j} if i /∈ S and j ∈ S,

S ∪ {j} \ {i} if j /∈ S and i ∈ S.

Given v ∈ GN and i, j ∈ [N ], we define vij ∈ GN by vij(S) = v(Sij). Intuitively, the

contributions of the players i, j in the game v are interchanged in the game vij.

Of course, a coalition game can be considered on any finite set of players M

through a bijection M ↪→ [|M |]. In this sense, we define v−i to be the restricted

game of v on the set of players [N ] \ {i}, i.e., v−i(S) = v(S) for all S ⊆ [N ] \ {i}.
We are now prepared to describe our second main result.

Theorem 1.4. There exists a unique allocation map v ∈ G 7→
(
Φi[v]

)
i∈N satisfying

Φi[v] ∈ GN with Φi[v] ≡ 0 for i > N if v ∈ GN , and also the following conditions:

A1(efficiency): v =
∑

i∈N Φi[v].

A2(symmetry): Φi[v
ij](Sij) = Φj[v](S) for all v ∈ GN , i, j ∈ [N ] and S ⊆ [N ].

A3(null-player): If v ∈ GN and div = 0 for some i ∈ [N ], then Φi[v] ≡ 0, and

Φj[v](S ∪ {i}) = Φj[v](S) = Φj[v−i](S) for all j ∈ [N ] \ {i}, S ⊆ [N ] \ {i}.

A4(linearity): For any v, v′ ∈ GN and α, α′ ∈ R, Φi[αv+α′v′] = αΦi[v] +α′Φi[v
′].

A5(reflection): For any v ∈ GN and S ⊆ [N ] \ {i, j} with i 6= j, it holds

Φi[v](S ∪ {i, j})− Φi[v](S ∪ {i}) = −
(
Φi[v](S ∪ {j})− Φi[v](S)

)
.
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Furthermore, the solution vi ∈ GN to (1.16) satisfy A1–A5 with the identification

Φi[v] = vi. In other words, A1–A5 characterizes the solutions {vi}i∈[N ] to (1.16).

In fact, this computer-scientific result is inspired by Lloyd Shapley’s value allo-

cation theory for cooperative games, which we will discuss in the following section.

In light of this characterization of the solutions to the Hodge-theoretic Poisson’s

equation (1.16), our conditions A1–A5 can be viewed as a completion of Shap-

ley’s original four axioms. Furthermore, in Section 3, we will demonstrate how our

value allocation operator Vi := V ∅div
defined in (1.12) can generalize Nash’s and

Kohlberg–Neyman’s value allocation scheme for strategic cooperative games.

1.1. Shapley’s four axioms of value allocation for coalition games. Shapley

considered the question of how to split the grand coalition value v([N ]) among the

players for a given game v ∈ GN . It is determined uniquely by the following result.

Theorem 1.5 (Shapley [34]). There exists a unique allocation v ∈ GN 7→
(
φi(v)

)
i∈[N ]

satisfying the following conditions:

· efficiency:
∑

i∈[N ] φi(v) = v([N ]).

· symmetry: v
(
S ∪ {i}

)
= v
(
S ∪ {j}

)
for all S ⊆ [N ] \ {i, j} yields φi(v) = φj(v).

· null-player: v
(
S ∪ {i}

)
− v(S) = 0 for all S ⊆ [N ] \ {i} yields φi(v) = 0.

· linearity: φi(αv + α′v′) = αφi(v) + α′φi(v
′) for all α, α′ ∈ R and v, v′ ∈ GN .

Moreover, this allocation is given by the following explicit formula:

(1.17) φi(v) =
∑

S⊆[N ]\{i}

|S|!
(
N − 1− |S|

)
!

N !

(
v
(
S ∪ {i}

)
− v(S)

)
.

The four conditions listed above are commonly referred to as the Shapley ax-

ioms. According to [39], [efficiency] means that the value obtained by the grand

coalition is fully distributed among the players, [symmetry] means that equivalent

players receive equal amounts, [null-player] means that a player who contributes

no marginal value to any coalition receives nothing, and [linearity] means that the

allocation is linear in game values. And (1.17) is referred to as the Shapley formula.

(1.17) can be rewritten also according to [39]: Suppose the players form the grand

coalition by joining, one-at-a-time, in the order defined by a permutation σ of [N ].

That is, player i joins immediately after the coalition Sσi =
{
j ∈ [N ] : σ(j) < σ(i)

}
has formed, contributing marginal value v

(
Sσi ∪ {i}

)
− v(Sσi ). Then φi(v) is the
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average marginal value contributed by player i over all N ! permutations σ, i.e.,

φi(v) =
1

N !

∑
σ

(
v
(
Sσi ∪ {i}

)
− v(Sσi )

)
=

1

N !

∑
σ

div(Sσi ).(1.18)

The well-known glove game below explains the formula (1.18) in a simple context.

Let N = 3, and suppose that player 1 has a left-hand glove, while players 2 and 3

each have a right-hand glove. A pair of gloves has value 1, while unpaired gloves

have no value. In other words, v(S) = 1 if S ⊆ N contains player 1 and at least

one of players 2 or 3, and v(S) = 0 otherwise. The Shapley values are given by:

φ1(v) =
2

3
, φ2(v) = φ3(v) =

1

6
.

This is easily seen from (1.18): player 1 contributes marginal value 0 when joining

the coalition first (2 of 6 permutations) and marginal value 1 otherwise (4 of 6

permutations), so φ1(v) = 2
3
. Efficiency and symmetry yield φ2(v) = φ3(v) = 1

6
.

Recently, [39] showed that the component game vi ∈ GN solving (1.16) satisfies

(1.19) vi([N ]) = φi(v) for every i ∈ [N ],

thereby obtaining a new characterization of the Shapley value as the value of the

grand coalition in each player’s component game.

However, each vi is not just defined at the state [N ] but at any state S ⊆ [N ].

This leads us to ask: What is the economic significance of vi(S), when S ( [N ]?

The explicit calculations that follow make this question a little more interesting.

Let δ[N ] ∈ GN be the pure bargaining game, defined by δ[N ]([N ]) = 1 and δ[N ](S) =

0 if S ( [N ]. One can calculate the component games (vi)i for the pure bargaining

game δ[N ] using the formulas in [39, Theorem 3.13]. For N = 2, one can compute

v1({1}) = v2({2}) =
1

4
, v1({2}) = v2({1}) = −1

4
, v1({1, 2}) = v2({1, 2}) =

1

2
.

For N = 3, vi({1, 2, 3}) = 1
3

for all i ∈ {1, 2, 3} is clearly the Shapley value, and

v1({1}) = v2({2}) = v3({3}) =
1

12
, v1({2, 3}) = v2({1, 3}) = v3({1, 2}) = −1

4
,

v1({2}) = v1({3}) = v2({1}) = v2({3}) = v3({1}) = v3({2}) = − 1

24
,

v1({1, 2}) = v1({1, 3}) = v2({1, 2}) = v2({2, 3}) = v3({1, 3}) = v3({2, 3}) =
1

8
.
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Even for such a simple game δ[N ], the formulas in [39, Theorem 3.13] become in-

creasingly complicated as N increases, and we hardly find any pattern in the values.

However, we can observe that vi can take negative values even if v is nonnegative.

Theorem 1.2 is a result of our effort to find an answer to the preceding question.

Notice that, by Theorem 1.2 and (1.19), the Shapley value (1.18) and the value of

our allocation operator at [N ] coincide, that is (see (1.12)):

(1.20) φi(v) = Vi([N ]), where Vi(S) := E
[ τ∅,S∑
n=1

div
(
X∅n−1, X

∅
n

)]
for S ⊆ [N ].

The summation formulas in (1.18) and (1.20), on the other hand, appear quite

different. While (1.18) consists of a finite sum along N ! paths in increasing order

driven by permutations σ, the paths ω in (1.20) are driven by the Markov chain

(1.21) pS,T = 1/N if (S, T ) is a forward or reverse edge, pS,T = 0 otherwise,

describing the canonical coalition progression in which every player has an equal

chance of joining or leaving the current coalition state at any time. The sum in

(1.20) (or, more generally, (1.12)) is, in particular, infinite. While the Shapley

formula (1.18) cannot easily be extended to other partial coalitions S ( [N ], our

value function (1.20) immediately extends to all states and provides its significance

as a fair allocation of the collaborative reward v(S) when S ( [N ]. In this sense,

(1.20) can be thought of as completing the Shapley formula.

However, we continue to ask the following: If the Shapley axioms can characterize

the Shapley value Vi([N ]), are there conditions that can characterize the values

Vi(S) for all states S? In other words, are there conditions that can characterize

the solutions to the Poisson equation d∗dvi = d∗div for any v ∈ GN? And, if they do

exist, will they have corresponding economic interpretation as the Shapley axioms?

Theorem 1.4, our second main result, now provides an answer by extending the

Shapley axioms through A1–A5. Let us go over these in more detail below.

Discussion for A1–A5. A1 and A4 are natural analogues of the corresponding

Shapley axioms. The condition in A2 is the same as if the players i, j switched

labels. We can interpret this as follows: if the contributions of i, j are interchanged,

so are their payoffs. A3 states that if div = 0, everything is the same as if i is not

present. In other words, if player i contributes nothing, the reward of the rest
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is independent of the null player i’s participation, and thus the player i receives

nothing by efficiency. So Φi[v] ≡ 0 is a result rather than a part of the axioms.

We’ve seen that A1–A4 are a natural extension of the Shapley axioms to deal

with different numbers of players N and coalitions S, as well as their symmetric

counterpart Sij. In particular, A1–A4 will determine the Shapley value Vi([N ]).

However, A1–A4 appear to be insufficient to fully determine Vi(S) for all coalitions

S ⊆ [N ], and our observation is that the reflection condition A5 appears to be the

key to complement A1–A4, on which we will now elaborate. In A5, by fixing i and

repeatedly adding players j in S, we find that A5 is equivalent to:1

A5’(reflection): For any v ∈ GN , i ∈ [N ] and S, T ⊆ [N ] \ {i}, it holds

(1.22) Φi[v](S ∪ {i})− Φi[v](T ∪ {i}) = −
(
Φi[v](S)− Φi[v](T )

)
.

A5’ is indeed inspired by the stochastic integral representation of the value function

Vi (1.20), which we will now discuss. Let S, T ⊆ [N ]\{i}, and consider an arbitrary

connected path ω of coalition process from S to T on the hypercube graph (1.14):

ω : X0 → X1 → · · · → Xn

where X0 = S, Xn = T , and each (Xk, Xk+1) is either a forward- or reverse-oriented

edge of the hypercube graph. Then the reflection of ω with respect to i is given by

ω′ : X ′0 → X ′1 → · · · → X ′n

where X ′k := Xk ∪{i} if i /∈ Xk, and X ′k := Xk \ {i} if i ∈ Xk. We observe that the

total contribution of the player i (that is, the sum of di’s) along the paths ω and ω′

has the opposite sign, because whenever the player i joins or leaves coalition along

ω, i leaves or joins coalition along ω′. By intergrating over all ω connecting S and

T , we finally arrive at (1.22). We emphasize the distinction once more: whereas the

Shapley formula (1.18) considers coalition processes in the joining direction only,

our path integral allows coalitions to proceed in either direction, which eventually

yields a complete characterization of the values Vi(S) for all coalitions S thanks to

A5. In this sense, A1–A5 can be thought of as completing the Shapley axioms.

1The author thanks Ari Stern for pointing out this equivalence.
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The remainder of the paper is structured as follows. In Section 2, we account

for the background. In Section 3, we delve deeper into the economic significance of

our findings. More specifically, we briefly introduce Nash’s and Kohlberg–Neyman’s

value allocation scheme for the strategic cooperative games, and explain how their

axiomatic notion of value can be reinterpreted and extended to all states S ⊆ [N ] in

terms of our value allocation operator. Section 4 will present proofs of the results.

2. Historical account and relevant work

In the 1940s, Richard Feynman discovered that the Schrödinger equation, the

differential equation governing the wave function of a quantum-mechanical system,

could be solved by averaging over paths, which led to a far-reaching reformulation

of quantum theory in terms of his path integrals [12]. Then came the Feynman–

Kac formula, which rigorously proves the real case of Feynman’s path integrals

and was inspired when Mark Kac attended a Feynman’s seminar in 1947. Mean-

while, Andrei Kolmogorov published a foundational paper [20] on continuous time

Markov processes in 1931, and his equations were later dubbed the Kolmogorov

forward and backward equations by William Feller [11]. Since then, much progress

has been made in the fundamental connection between SDEs and PDEs, and we

refer to Stroock and Varadhan [40], Karatzas and Shreve [15], and Lawler [22]

for a comprehensive account. We note that the martingale property of stochastic

processes, and thus the vanishing drift terms in the Itô calculus, appears to play

a central role in theories related to the Feynman–Kac formula and more general

connections between SDEs and PDEs. On the other hand, the martingale property

is nowhere used in the derivation of Theorem (1.2), but time-reversibility appears

to be critical. We only dealt with the Poisson’s equation in Theorem (1.2), but we

believe that there should be a much richer connection between various combinato-

rial PDEs and stochastic path-integrals on graphs with Hodge structure, which is

the author’s main research agenda. For example, the author would like to know if

there is a PDE whose solution represents the variance of the path-integral (1.11).

Mathematical finance is one of the major and rapidly growing fields where the

SDE–PDE connection is especially important, with the Black–Scholes–Merton op-

tion pricing formula [6, 26, 27] serving as a representative example. In this regard,

we refer to Shreve [37, 38], Karatzas and Shreve [16], and the references therein.
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Extensive research on the cooperative and noncooperative games has been in-

spired by and evolved from the pioneering study by Shapley [33–36], and his orig-

inal four axioms have been followed by many further considerations and variants,

e.g., Young [41] and Chun [3]. The A3 condition in Theorem 1.4 may be seen as

an extension of the “null player out” property in Derks and Haller [10], by noting

that A3 now applies for all coalitions S. The use of graph structures to describe

cooperation, as well as their orders and constraints, is credited to Myerson [28, 29].

Our contribution is that while previous axiomatic approaches could only charac-

terize the Shapley value Vi([N ]), our axioms, especially when complemented by A5,

can now characterize the value allocation Vi(S) for all S ⊆ [N ]. That is, our A1–

A5 can now characterize the solution to the Poisson’s equation of the form (1.16).

Another contribution is that we now introduce completely general graphs to rep-

resent general cooperation processes (e.g., Example 1.3), whereas previous works

mostly focused on coalition graphs that only describe the order of the coalition,

i.e., the order in which the players join the coalition. Previous research in coop-

erative game theory has primarily focused on how to create sound “axioms” that

can characterize value allocation. Now, our introduction of general game graphs

implies that, rather than a set of axioms, the main task for a given strategic and

cooperative situation may be to set up a suitable game graph with the likelihood

of the progression direction. If this task is completed successfully, our value allo-

cation operator (1.12) will calculate a natural and fair value allocation for each

participant. This idea is highlighted in Section 3, which reinterprets and extends

Nash’s and Kohlberg–Neyman’s value allocation for strategic cooperative games.

Recently, the combinatorial Hodge decomposition has been applied to game

theory in a variety of contexts, e.g., noncooperative games (Candogan et al. [2]),

cooperative games (Stern and Tettenhorst [39]), and ranking of social preferences

(Jiang et al. [14]). Lim [23] provides an introduction to Hodge theory on graphs,

while Hodge [13] and Kodaira [17] provide general and profound Hodge theory.

Another important recent development is the mean field game theory, the study

of strategic decision making by interacting agents in large populations; see, e.g.,

Cardaliaguet et al. [7], Acciaio et al. [1], Bayraktar et al. [4, 5], Possamäı et al. [31],

Lacker and Soret [21]. Carmona and Delarue [8, 9] provides a detailed account.
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3. Dynamic interpretation and extension of Nash’s and

Kohlberg–Neyman’s value allocation for strategic games

According to Kohlberg and Neyman [18], a strategic game is a model for a mul-

tiperson competitive interaction. Each player chooses a strategy, and the combined

choices of all the players determine a payoff to each of them. A problem of interest

in game theory is the following: How to evaluate, in advance of playing a game,

the economic worth of a player’s position? A “value” is a general solution, that is,

a method for evaluating the worth of any player in a given strategic game.

In this section, we briefly introduce Nash’s and Kohlberg–Neyman’s value, and

explain how their axiomatic notion of value can be represented by our value allo-

cation operator (1.20), and as a result, can readily be generalized to all coalitions.

According to [18], a strategic game is defined by a triple G = ([N ], A, g), where

· [N ] = {1, 2, ..., N} is a finite set of players,

· Ai is the finite set of player i’s pure strategies, and A =
∏N

i=1A
i,

· gi : A→ R is player i’s payoff function, and g = (gi)i∈[N ].

The same notation, g, is used to denote the linear extension

· gi : ∆(A)→ R,

where for any set K, ∆(K) denotes the probability distributions on K.

For each coalition S ⊆ [N ], we also denote

· AS =
∏

i∈S A
i, and

· XS = ∆(AS) (correlated strategies of the players in S).

Let G([N ]) be the set of all N -player strategic games. Consider γ : G([N ])→ RN

that associates with any strategic game an allocation of payoffs to the players. Now,

Kohlberg and Neyman [18] proposed a set of axioms for characterizing γ, the core

concept of which is the following definition of the threat power of coalition S:

(3.1) (δG)(S) := max
x∈XS

min
y∈X[N ]\S

(∑
i∈S

gi(x, y)−
∑
i/∈S

gi(x, y)

)
.

The threat power of S (to the other party [N ] \ S) can be read as the maximum

difference between the sum of the players’ payoffs in S and the sum of the other

party’s payoffs, regardless of what collective strategies the other party employs.

Then Kohlberg and Neyman demonstrated that the axioms of Efficiency (the

sum of all players’ payoffs, i.e., (δG)([N ]), is fully distributed among the players),

Balanced threats (see below), Symmetry (equivalent players receive equal amounts),
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Null player (a player having no strategic impact on players’ payoffs has zero value),

and Additivity (the allocation is additive on strategic games) uniquely determine

an allocation γ; see [18] for details. Moreover, such allocation γ is a generalization

of the Nash solution for two-person games [30] into N -person games, according to

[18]. Now among the axioms, the axiom of balanced threats asserts the following:

· If (δG)(S) = 0 for all S ⊆ [N ], then γi = 0 for all i ∈ [N ].

Namely, if no coalition S has threat power over the other party, the allocation is

zero for all players. From now on let γ = (γ1, ..., γN) denote the unique allocation

determined by the above five axioms. [18] also provided an explicit formula for γ:

(3.2) γiG =
1

N !

∑
σ

(δG)
(
S̄σi
)
,

where the summation is over all permutations σ of the set [N ], Sσi is the subset

consisting of those j ∈ [N ] that precede i in the ordering σ, and S̄σi := Sσi ∪ {i}.
Now we focus on (3.2) and manipulate it as follows. By minimax principle, it is

easily seen that (δG)(S) = −(δG)([N ] \ S). This antisymmetry implies

γiG =
1

N !

∑
σ

(δG)
(
S̄σi
)
− (δG)

(
[N ] \ S̄σi

)
2

=
1

2N !

∑
σ

(δG)
(
S̄σi
)
− 1

2N !

∑
σ

(δG)
(
[N ] \ S̄σi

)
=

1

2N !

∑
σ

(δG)
(
S̄σi
)
− 1

2N !

∑
σ

(δG)
(
Sσi
)
.(3.3)

Motivated by this, let us define the coalition game v = vG : 2[N ] → R as follows:

(3.4) v(S) :=
(δG)(S) + (δG)([N ])

2
=

(δG)([N ])− (δG)([N ] \ S)

2
.

The value function v(S) may be interpreted as the grand coalition value (δG)([N ])

subtracted by the threat power of the other party [N ] \ S, with a factor of 1/2.

By the fact that the value function v is a translation of δG/2, we have

div(Sσi ) = v(S̄σi )− v(Sσi ) =
(δG)

(
S̄σi
)
− (δG)

(
Sσi
)

2
.
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In view of (3.3), we arrive at the following alternative expression for γiG:

γiG =
1

N !

∑
σ

div(Sσi ).

We observe that this is the Shapley value (1.18) for the coalition game v = vG. Then

we recall that [39] defined the component game vi for each i ∈ [N ] as the unique

solution in GN to the equation d∗dvi = d∗div, and showed that the component game

value at the grand coalition coincides with the Shapley value, that is, vi([N ]) = γiG

in this context. With this, Theorem 1.2 now allows us to conclude the following.

Theorem 3.1 (Stochastic integral extension of Nash’s and Kohlberg–Neyman’s

value). Given a strategic game G ∈ G([N ]), let v ∈ G(2[N ]) be the coalition game

defined as in (3.4). Let the hypercube graph (1.14) be equipped with constant weight

λ ≡ 1, and let (Xn)n∈N0 be the canonical Markov chain (1.21) with X0 = ∅. Then

for each player i ∈ [N ] and every coalition S ⊆ [N ], the value allocation operator

Vi(S) = E
[ τ∅,S∑
n=1

div
(
Xn−1, Xn

)]
extends Nash’s and Kohlberg–Neyman’s value in the sense that Vi([N ]) = γiG.

Furthermore, the conditions A1–A5 in Theorem (1.4) characterizes the value Vi(S)

for all coalitions S ⊆ [N ], including the Kohlberg and Neyman’s value γiG.

Proof. Stern and Tettenhorst [39] showed vi([N ]) = γiG, where vi ∈ GN is the

solution to (1.16). Theorem 1.2 and Lemma 1.1(ii) then yields vi = Vi on 2[N ]. �

We note that Kohlberg and Neyman also introduce the concept of Bayesian

games, which is a game of incomplete information in the sense that the players do

not know the true payoff functions, but only receive a signal that is correlated with

the payoff functions; see [18] for details. However, the threat power, (δBG)(S), of

a coalition S in the Bayesian game G remains antisymmetric, i.e., (δBG)(S) =

−(δBG)([N ] \S), and the value allocation also satisfies the representation formula

(3.2). As a result, we can conclude that the value of Bayesian games still admits the

stochastic path-integral extension for all coalitions, as shown in Theorem 3.1. We

refer to [18, 19] for a nice review of the historical development of the ideas around

the notion of value, as well as several applications to various economic models.
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4. Proofs

We present proofs of the results. Results are restated for the reader’s convenience.

Lemma 4.1. i) The solutions v to (1.7) do not depend on the choice of ρ.

ii) If the graph G is connected, any two solutions u, v to (1.7) differ by a constant.

Proof. i) (d∗dv − d∗f)(S) = 1
ρ(S)

∑
T∼S λ(T, S)[v(S)− v(T )− f(T, S)] shows that

(d∗dv−d∗f)(S) = 0 if and only if
∑

T∼S λ(T, S)[v(S)−v(T )−f(T, S)] = 0, showing

there is no dependence on ρ. ii) Observe that the connectedness of G implies that

the nullspace N (d) is one-dimensional, spanned by the constant game 1, defined

by 1(S) := 1 for all S ∈ Ξ. Now if d∗du = d∗dv, then we have u− v ∈ N (d). �

Now we’ll look at the proof of Theorem 1.2. This necessitates the development

of a transition formula for the value function. The fact that the Markov chain is

irreducible and thus visits every state infinitely many times is used implicitly, and

furthermore, the time-reversibility of the Markov chain seems crucial to the proofs.

Lemma 4.2. Let (G, λ) be any connected weighted graph. For any S, T, U ∈ Ξ and

f ∈ `2
λ(E), we have V U

f (T )− V U
f (S) = V S

f (T ).

Proof. We’ll first prove a special case V S
f (T ) = −V T

f (S). Consider a general finite

sample path ω of the Markov chain (1.8) starting at S, visiting T , then returning to

S (this happens with probability 1). We can split this journey into four subpaths:

ω1: the path returns to S m ∈ N0 times without visiting T ,

ω2: the path begins at S and ends at T without returning to S,

ω3: the path returns to T n ∈ N0 times without visiting S,

ω4: the path begins at T and ends at S without returning to T .

Thus ω = ω1◦ω2◦ω3◦ω4 is the concatenation of the ωi’s, and the probability P(ω)

of this finite sample path being realized satisfies P(ω) = P(ω1)P(ω2)P(ω3)P(ω4).

Now consider a pairing ω′ of ω as follows: let ω−1
1 be the reversed path of ω1,

that is, if ω1 visits T0 → T1 → · · · → Tk (where T0 = Tk = S for ω1), then ω−1
1

visits Tk → · · · → T0. Recall P(ω1) = P(ω−1
1 ) due to the time-reversibility (1.10).

Now define ω′ := ω−1
1 ◦ ω2 ◦ ω−1

3 ◦ ω4. This is another general sample path starting

at S, visiting T , then returning to S. Then we have P(ω) = P(ω′), and moreover,

ISf (T )(ω) + ISf (T )(ω′) = 2

τS,T (ω2)∑
n=1

f
(
XS
n−1(ω2), XS

n (ω2)
)
,
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because the loops ω1 and ω−1
1 aggregate f with opposite signs, hence they cancel out

in the above sum. Now consider ω̃ := ω3◦ω−1
2 ◦ω1◦ω−1

4 and ω̃′ := ω−1
3 ◦ω−1

2 ◦ω−1
1 ◦ω−1

4 .

(ω̃, ω̃′) then represents a pair of general sample paths starting at T , visiting S, then

returning to T . We then calculate

ITf (S)(ω̃) + ITf (S)(ω̃′) = 2

τT,S(ω−1
2 )∑

n=1

f
(
XT
n−1(ω−1

2 ), XT
n (ω−1

2 )
)

= −2

τS,T (ω2)∑
n=1

f
(
XS
n−1(ω2), XS

n (ω2)
)

= −(ISf (T )(ω) + ISf (T )(ω′))

because f(U, V ) = −f(V, U) for any edge (U, V ). Due to the generality of the

pair (ω, ω′) and its counterpart (ω̃, ω̃′), and P(ω) = P(ω′) = P(ω̃) = P(ω̃′) from

the reversibility (1.10), the desired identity V S
f (T ) = −V T

f (S) now follows by

integration. Next, in order to show V U
f (T )− V U

f (S) = V S
f (T ), we proceed

IUf (T )− IUf (S) =

τU,T∑
n=1

f
(
XU
n−1, X

U
n

)
−

τU,S∑
n=1

f
(
XU
n−1, X

U
n

)
= 1τU,S<τU,T

τU,T∑
n=τU,S+1

f
(
XU
n−1, X

U
n

)
− 1τU,T<τU,S

τU,S∑
n=τU,T +1

f
(
XU
n−1, X

U
n

)
.

By taking expectation, we obtain the following via the Markov property

E[IUf (T )]− E[IUf (S)] = P({τU,S < τU,T})V S
f (T )− P({τU,T < τU,S})V T

f (S)

= V S
f (T )

which proves the transition formula V U
f (T )− V U

f (S) = V S
f (T ). �

Theorem 4.3. Let f ∈ `2
λ(E) and let the Markov chain (1.8) be defined on a

weighted graph (G, λ). Then V S
f solves the Poisson’s equation

(4.1) d∗dV S
f = d∗f

on the connected component of G that contains the initial state S.

Proof. By Lemma 1.1, we can set ρ ≡ 1. Let {T1, ..., Tn} be the set of all vertices

adjacent to T (i.e., either (T, Tk) or (Tk, T ) is in E), and set ΛT =
∑n

k=1 λ(T, Tk).
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Assume S, T, T1, ..., Tn lie in a connected component of G. By (1.5), (1.8), we have

d∗f(T )/ΛT =
n∑
k=1

pT,Tkf(Tk, T ), and(4.2)

d∗dV S
f (T )/ΛT =

n∑
k=1

pT,Tk
(
V S
f (T )− V S

f (Tk)
)

=
n∑
k=1

pT,TkV
Tk
f (T )(4.3)

where the last equality is from Lemma 4.2. Now observe that we can interpret (4.3)

as the aggregation (1.12) of path integrals of f (1.11) along all loops beginning

and ending at T , but in this aggregation of f we do not take into account the first

move from T to Tk, since this first move is described by the transition rate pT,Tk
and not driven by V Tk

f . Meanwhile, if we aggregate path integrals of f for all loops

emanating from T , we get zero due to the reversibility (1.10). Hence we conclude:

0 = aggregation of path integrals of f along all loops emanating from T

= aggregation of path integrals of f along all loops except the first moves

+ aggregation of path integrals of f for all first moves from T

=
n∑
k=1

pT,TkV
Tk
f (T ) +

n∑
k=1

pT,Tkf(T, Tk)

= d∗dV S
f (T )/ΛT − d∗f(T )/ΛT ,

yielding d∗dV S
f (T ) = d∗f(T ). This completes the proof. �

Theorem 4.4. There exists a unique allocation map v ∈ G 7→
(
Φi[v]

)
i∈N satisfying

Φi[v] ∈ GN with Φi[v] ≡ 0 for i > N if v ∈ GN , and also the following conditions:

A1(efficiency): v =
∑

i∈N Φi[v].

A2(symmetry): Φi[v
ij](Sij) = Φj[v](S) for all v ∈ GN , i, j ∈ [N ] and S ⊆ [N ].

A3(null-player): If v ∈ GN and div = 0 for some i ∈ [N ], then Φi[v] ≡ 0, and

Φj[v](S ∪ {i}) = Φj[v](S) = Φj[v−i](S) for all j ∈ [N ] \ {i}, S ⊆ [N ] \ {i}.

A4(linearity): For any v, v′ ∈ GN and α, α′ ∈ R, Φi[αv + α′v′] = αΦi[v] + α′Φi[v
′].

A5(reflection): For any v ∈ GN and S ⊆ [N ] \ {i, j} with i 6= j, it holds

Φi[v](S ∪ {i, j})− Φi[v](S ∪ {i}) = Φi[v](S)− Φi[v](S ∪ {j}).

Furthermore, the solution vi ∈ GN to (1.16) satisfy A1–A5 with the identification

Φi[v] = vi. In other words, A1–A5 characterizes the solutions {vi}i∈[N ] to (1.16).
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Proof. Recall that A5 is equivalent to A5’, i.e., for any S, T ⊆ [N ] \ {i}, it holds

(4.4) Φi[v](S ∪ {i})− Φi[v](T ∪ {i}) = −
(
Φi[v](S)− Φi[v](T )

)
.

We claim that A1–A5’ determines the linear operator Φ uniquely (if exists). For

each N ∈ N, define the basis games δS,N of GN for every S ⊆ [N ], S 6= ∅, by

δS,N(S) = 1, δS,N(T ) = 0 if T 6= S.

We proceed by an induction on N . The case N = 1 is already from A1. Suppose

the claim holds for N − 1, so Φi[δS,N−1] are determined for all S ∈ 2[N−1] \ {∅}.
Now define the games ∆(S,S∪{i}) ∈ GN for each i ∈ [N ], S ⊆ [N ] \ {i}, S 6= ∅, by

∆(S,S∪{i})(T ) = 1 if T = S or T = S ∪ {i}, ∆(S,S∪{i})(T ) = 0 otherwise.

Notice then A3 determines Φ for all ∆(S,S∪{i}) ∈ GN . By A4, to prove the claim, it is

enough to show A1–A5’ can determine Φ for the pure bargaining game δ := δ[N ],N .

By A2,
∑

S⊆[N ] Φi[δ](S) is constant for all i ∈ [N ], thus it is 1/N by A1. Define

ui(S) := Φi[δ](S)− 1

N2N
for all S ⊆ [N ]

so that ui(∅) = − 1
N2N

and
∑

S⊆[N ] ui(S) = 0 for all i. Now observe A5’ implies:

ui(S) + ui(S ∪ {i}) is constant for all S ⊆ [N ] \ {i}, hence it is zero.

This determines ui thus Φi[δ] as follows: suppose ui(S) has been determined for all

i and |S| ≤ k−1. Let |T | = k. Then we have ui(T ) = −ui(T \{i}) for all i ∈ T and

it is constant (say ck) by A2. Then by A1 and A2, uj(T ) = − kck
N−k for all j /∈ T .

By induction, the proof of uniqueness of the operator Φ is therefore complete.

It remains to show the solutions (vi)i∈[N ] to (1.16) satisfy A1–A5’ with Φi[v] = vi.

A4 is clearly satisfied by (vi)i. To show that A1 is satisfied, we compute

d∗d
∑
i∈[N ]

vi =
∑
i∈[N ]

d∗dvi =
∑
i∈[N ]

d∗div = d∗
∑
i∈[N ]

div = d∗dv,

since d =
∑

i∈[N ] di. Hence by unique solvability of (1.16),
∑

i∈[N ] vi = v as desired.

Next let σ be a permutation of [N ]. As in [39], let σ act on `2(2[N ]) and `2(E) via

σv(S) = v(σ(S)) and σf
(
S, S∪{i}

)
= f

(
σ(S), σ(S∪{i})

)
, v ∈ `2(2[N ]), f ∈ `2(E).
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It is easy to check dσ = σd and diσ = σdσ(i). We also have d∗σ = σd∗, since

〈v, d∗σf〉 = 〈dv, σf〉 = 〈σ−1dv, f〉 = 〈dσ−1v, f〉 = 〈σ−1v, d∗f〉 = 〈v, σd∗f〉

for any v ∈ `2(2[N ]), f ∈ `2(E). Now let σ be the transposition of i, j. We have

d∗d(σv)i = d∗diσv = d∗σdjv = σd∗djv = σd∗dvj = d∗dσvj

which shows (σv)i = σvj by the unique solvability. Notice this corresponds to A2.

For A3, let v ∈ GN , i ∈ [N ], and assume div = 0. Then from (1.16) we readily get

vi ≡ 0. Fix j 6= i, and let d̃, d̃j be the differential operators restricted on 2[N ]\{i},

and set ṽ = v−i, i.e., ṽ is the restriction of v on 2[N ]\{i}. Let ṽj be the corresponding

component game on 2[N ]\{i}, solving the defining equation d̃∗d̃ṽj = d̃∗d̃j ṽ. Finally,

in view of A3, define vj ∈ GN by vj = ṽj on 2[N ]\{i} and divj = 0. Now observe that

A3 will follow if we can verify that this vj indeed solves the equation d∗dvj = d∗djv.

To show this, let S ⊆ [N ] \ {i}. In fact the following string of equalities holds:

d∗dvj(S ∪ {i}) = d∗dvj(S) = d̃∗d̃ṽj(S) = d̃∗d̃j ṽ(S) = d∗djv(S) = d∗djv(S ∪ {i})

which simply follows from the definition of the differential operators. For instance

d∗dvj(S) =
∑
T∼S

dvj(T, S) =
∑

T∼S, T 6=S∪{i}

dvj(T, S) = d̃∗d̃ṽj(S)

where the second equality is due to divj = 0. On the other hand, since j 6= i,

d∗djv(S) =
∑
T∼S

djv(T, S) =
∑
T∼S

d̃j ṽ(T, S) = d̃∗d̃j ṽ(S).

The first and last equalities in the string should now be obvious, verifying A3.

Finally we verify A5’. For this, we need to verify the following claim

vi(S) + vi(S ∪ {i}) is constant over all S ⊆ [N ] \ {i}.

Let S ⊆ [N ]\{i}, and recall d∗div(S) = v(S)−v(S∪{i}) = −d∗div(S∪{i}). Hence

d∗dvi(S) + d∗dvi(S ∪ {i}) = 0. Define wi ∈ `2(2[N ]) by wi(S) = vi(S ∪ {i}) and

wi(S ∪ {i}) = vi(S) for all S ⊆ [N ] \ {i}. Then clearly d∗dvi(S ∪ {i}) = d∗dwi(S)

and d∗dvi(S) = d∗dwi(S ∪ {i}). Thus d∗d(vi + wi) ≡ 0, hence vi + wi ∈ N (d),

meaning that vi + wi is constant. This proves the claim, hence the theorem. �
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