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Node classification in networks via simplicial
interactions

Eunho Koo and Tongseok Lim

Abstract—In the node classification task, it is intuitively un-
derstood that densely connected nodes tend to exhibit similar
attributes. However, it is crucial to first define what constitutes a
dense connection and to develop a reliable mathematical tool
for assessing node cohesiveness. In this paper, we propose a
probability-based objective function for semi-supervised node
classification that takes advantage of higher-order networks’
capabilities. The proposed function embodies the philosophy
most aligned with the intuition behind classifying within higher-
order networks, as it is designed to reduce the likelihood of
nodes interconnected through higher-order networks bearing
different labels. We evaluate the function using both balanced
and imbalanced datasets generated by the Planted Partition
Model (PPM), as well as a real-world political book dataset.
According to the results, in challenging classification contexts
characterized by low homo-connection probability, high hetero-
connection probability, and limited prior information of nodes,
higher-order networks outperform pairwise interactions in terms
of objective function performance. Notably, the objective function
exhibits elevated Recall and F1-score relative to Precision in the
imbalanced dataset, indicating its potential applicability in many
domains where detecting false negatives is critical, even at the
expense of some false positives.

Index Terms—Node classification, semi-supervised, simplex,
clique, node interaction, higher-order networks, hypergraph,
probabilistic objective function.

I. INTRODUCTION

Networks represented by graphs consist of nodes represent-
ing entities of the system, and edges depicting their interac-
tions. Such graphical representations facilitate insights into the
system’s modular structure or its inherent communities [1],
[2]. While traditional graph analysis methods only considered
pairwise interaction between nodes, recent research, including
those in social sciences [3]–[5] and biochemical systems
[6], have experimentally demonstrated that networks in real
systems often rely on interactions involving more than two
nodes or agents. As a result, to analyze the attributes of a
network, it is essential to illuminate the causal interactions
of the network using higher-order networks (or hypergraphs)
beyond pairwise relationship [7]–[9].

There are various approaches to address this point of view,
and recent studies are elucidating the relationships between
cliques (a subset of nodes such that every two distinct nodes in
the clique are adjacent) that form higher-order networks using
probabilistic modeling based on the Stochastic Block Model
(SBM) [10]–[13]. SBM is a generative model for random

Eunho Koo: Center for AI and Natural Sciences, Korea Institute for Ad-
vanced Study (KIAS), Seoul 02455, Republic of Korea (kooeunho@kias.re.kr)
Tongseok Lim: Mitchell E. Daniels, Jr. School of Business, Purdue University,
West Lafayette, Indiana 47907, USA (lim336@purdue.edu)

graphs that includes the following parameters: the number of
nodes, the number of disjoint communities to which each node
belongs, and the probability of edge connections between each
community. The most basic and widely used form of SBM
assumes that the number of nodes in each community and the
probability of edge connections within the same community
are the same, but various modified versions of SBM have also
been studied [14]–[17].

Studies related to community detection (or network clus-
tering), on the other hand, have also been actively pursued
[18]–[21]. The goal of these studies is to divide the entire
system’s nodes into several communities, with nodes in each
community being densely connected internally [22]. Research
involving the higher-order network analysis has also advanced
in this field, including the Bayesian framework [23], d-wise
hypergraph SBM on the probability of a hyperedge [24], the
sum-of-squares method of SBM [13], and spectral analysis
based on the Planted Partition Model (PPM), a variant of
SBM [11], [25]. We point out that many studies only consider
the network’s internal topology and do not take into account
prior information. However, in many real-world networks,
even if it is a very small proportion of the total number of
nodes, the use of prior information is available, that is, we
can utilize some known labels of nodes and the total number
of labels (communities). It has been reported that with only
limited prior information, prediction accuracy and robustness
in real noisy networks can be significantly improved [26]–[31],
and various methods have been suggested, including discrete
potential theory method [32], spin-glass model in statistical
physics application [26], strategies integrating known cluster
assignments for a fraction of nodes [33], and nonnegative
matrix factorization model [29].

In this study, we propose a novel probability-based objective
(loss) function for the semi-supervised node classification
(community detection) task using higher- order networks. The
loss function is motivated by the intuition that nodes densely
interconnected with edges in a given network are likely to
exhibit similar labels. It is intended to incentivize nodes in a
hyperedge (a clique) to have the same label by imposing a
penalty when nodes within the hyperedge have diverse labels.
It is worth noting that the intuition is consistent with SBM’s
general assumption that nodes with the same label are more
likely to be connected in a network.

In conjunction with the objective function, we use discrete
potential theory to initialize the node probability distribution,
specifically the solution to an appropriate Dirichlet boundary
value problem on graphs, which can be effectively solved
using the concept of equilibrium measures [34]. We then
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generate balanced and imbalanced graphs using the PPM,
a variant of the SBM, to evaluate the performance of the
proposed objective function and our optimization formulation.
We also test the proposed method on real-world political
book data [22], [35]. It is worth noting that the proposed
objective function is applicable in a variety of situations, such
as with different SBM parameters such as the number of
nodes, the number of labels (communities), and the connec-
tion probabilities within the same or different communities.
In other words, regardless of whether the communities are
balanced or imbalanced, or the number of communities, this
study proposes a versatile approach that aims to improve
classification performance by fully utilizing the structure of
the higher-order networks.

This paper is structured as follows. Some preliminary in-
formation is provided in Section II. The objective function is
illustrated in detail in Section III. The experimental setup is
described in Section IV. The result is evaluated in Section
V. Finally, in Section VI, the conclusion and future work are
presented.

II. PRELIMINARIES

In this section, we give some basic definitions and mathe-
matical concepts used in this study.

A. Higher-order networks

In many real-world systems, network interactions are not
just pairwise, but involve the joint non-linear couplings of
more than two nodes [36]. Here, we fix some terminology on
higher-order networks that will be used throughout the paper
for the undirected graphs.

A (undirected) graph G = (V,E) consists of a set V =
{1, 2, ..., n} of n nodes, and a set E ⊂ {(i, j) | i, j ∈ V, i 6= j}
of edges. We have (i, j) = (j, i) = {i, j} as G is undirected.
We assume that a graph G is connected.1

A hypergraph generalizes E as E ⊂ 2V where 2V denotes
the power set of V , and we denote the hypergraph as H =
(V, E). In this paper, we focus on the case where E consists
of the simplices in G: For k ∈ N0 = N ∪ {0}, we say σ =
{n0, n1, ..., nk} is a k-simplex (which is also called a (k+1)-
clique) if the vertices ni ∈ V are distinct (i.e., |σ| = k + 1)
and for every 0 ≤ i < j ≤ k, we have (ni, nj) ∈ E. Let Kk =
Ek−1 denote the set of all k-cliques, or (k − 1)-simplices, in
G. Note that E0 = V , E1 = E; a node is a 0-simplex, an edge
a 1-simplex, a triangle a 2-simplex, a tetrahedron a 3-simplex,
and so on. The set comprising all cliques of a graph G,

K(G) :=

ω(G)⋃
k=1

Kk(G), (1)

is called the clique complex of the graph G. The clique number
ω(G) is the number of vertices in a largest clique of G [37].
In this paper, we will consider E a subset of K(G) in terms
of a hypergraph.

1Because our proposed algorithm can be applied to each connected com-
ponent of a graph, the assumption can be made without loss of generality.
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Example 1. For a given V = {1, 2, 3, 4} in Figure 1, consider

E =
{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}
.

There are four 0-simplices: K1 = {{1}, {2}, {3}, {4}}; four
1-simplices: K2 = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}; and one 2-
simplex: K3 = {{1, 2, 3}}.

B. Node classification algorithm based on random walk on
graphs

In the semi-supervised node classification (partially labeled
data classification) tasks, a classic and widely used algorithm
based on a random walk on a graph is the following. Given
a graph G = (V,E), a (unbiased) random walk moves from
i ∈ V to j ∈ V with probability 1/k if (i, j) ∈ E (i.e., i and j
are adjacent) and the degree of i (the number of nodes adjacent
to i) is k. For a node set V = {1, 2, ..., n} and a label-index set
I = {1, ..., l}, we assume that each node corresponds to one
label in I and we know the labels for only a small proportion
of nodes relative to |V |. For i ∈ I and y ∈ V , let Pi(y) denote
the probability that a random walk starting from an unlabeled
node y will reach an i-labeled node before arriving at any
other labeled node. If argmaxi∈I Pi(y) = k, the algorithm
concludes that the label of the unlabeled node y is k. If a
node y is already labeled as k, we have Pi(y) = 1 if i = k
and Pi(y) = 0 if i 6= k. In this study, we refer to this algorithm
as RW, which stands for Random Walk.

Now the question is how to obtain Pi(y) for all y ∈ V
and i ∈ I . Potential theory shows that Pi(y) can be obtained
from the solution u of the following Dirichlet boundary value
problem

Lu(x) = 0 if x ∈ F = (Ei ∪Hi)
c, (2)

u(x) = 1 if x ∈ Ei,
u(x) = 0 if x ∈ Hi,

where L = D − A is the graph Laplacian matrix where
D,A are degree and adjacency matrix of a given graph G,
respectively [37], Ei is the set of i-labeled nodes, Hi is the
set of labeled nodes excluding i-labeled nodes, and u is a
function on V , valued in [0, 1]. Then it holds Pi(y) = u(y)
for all y ∈ V .

Bendito, Carmona and Encinas [34] proposed an elegant
solution to the Dirichlet problem (2) in terms of equilibrium
measures. For any decomposition V = F ∪ F c where F and
F c are both non-empty, they showed there exists a unique
measure (function)2 such that Lv(x) = 1 (and v(x) > 0) for

2As V is a finite set, a measure on V can be identified with a real-valued
function on V .
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all x ∈ F and Lv(x) = 0 (and v(x) = 0) for all x ∈ F c. The
measure is called the equilibrium measure and denoted by vF .
Now for V = F ∪ F c where F, F c are the set of unlabeled
and labeled nodes, they showed that the solution u of (2) can
be represented by

u(x) =
∑
z∈Ei

v{z}∪F (x)− vF (x)

v{z}∪F (z)
, x ∈ V. (3)

Because vF can be obtained by solving a linear program, (3)
provides an efficient way to solve the Dirichlet problem (2);
see [34] for more details.

We will use RW as a baseline algorithm for the semi-
supervised node classification. Note that RW employs random
walks and does not utilize higher-order interactions (HOI).
However, RW will be useful not only for comparing perfor-
mance with our HOI-applied strategies, but also for providing
a useful initialization method for training HOI algorithms.

C. Planted partition model (PPM)

Initially conceptualized within social networking and bioin-
formatics, Stochastic Block Model (SBM) [10] harnesses a
probabilistic approach, giving a simple generative model for
random graphs. For a node set V = {1, ..., n}, we consider l
distinct labels or communities such that Ci’s are non-empty
disjoint subsets of V for i ∈ I = {1, ..., l}. The connection
probabilities between nodes in V by edges is identified by
a l × l edge-probability matrix P where Pij indicates the
probability that a node belonging to the ith label connects
with a node in the jth label by an edge. In many cases, the
diagonal elements of P are greater than off diagonal elements,
implying that the connection probability within the same label
is higher than between different labels. Most used SBM is the
planted partition model (PPM) that has a constant probability
p on the diagonal P and another constant probability q (in
general, less than p) off the diagonal. The essence of PPM is
that connections are not formed by chance, and they inherently
reflect block membership. Recent advancements [38] have
expanded PPM’s capabilities to include adaptive algorithms
that evaluate optimal block configurations and detect various
block interaction patterns.

III. PROPOSED MODEL

We now propose an objective function for node classi-
fication using higher-order networks. Given a graph G, let
V = {1, ..., n} be the node set, I = {1, ..., l} be the label
index set, that is, the graph consists of n nodes, and each node
has a label ranging from 1 to l. Probability distribution over
the labels for the node j is given by (pj1, p

j
2, ..., p

j
l ), where

pji denotes the probability that node j having label i, thus∑l
i=1 p

j
i = 1 for every j ∈ V . We define Kk as the set of

(k − 1)-simplices in the graph, e.g., K1,K2,K3 corresponds
the set of nodes, edges, triangles, respectively. Let M = ω(G)
be the maximum possible value of k, that is, the simplex
composed of the most nodes in the graph is a (M − 1)-
simplex with M nodes. Also, we define permutation set with
repetitions, denoted by Sk, as the set of ordered (and repetition

allowed) arrangements of k elements over I = {1, ..., l}, hence
|Sk| = lk. Finally, we define an objective function for node
classification as

J =

M∑
k=2

wk
∑

(j1,...,jk)∈Kk

∑
(i1,...,ik)=θ∈Sk

Cθp
j1
i1
pj2i2 . . . p

jk
ik

(4)

where wk ≥ 0 are constants, Cθ =
(

k
e1,e2,...,el

)
= k!

e1!e2!...el!

such that
∑l
i=1 ei = k, and ei is the number of occurrences of

the label i in (i1, i2, . . . , ik) = θ ∈ Sk for each i ∈ I . Notice
J is determined by the underlying graph G, and is a function
of probabilities {pji}i∈I,j∈V . We then solve the minimization
problem

Minimize J over ∆n = ∆×∆× · · · ×∆ (5)

where ∆ is the probability simplex in Rl, such that pj :=
(pj1, p

j
2, ..., p

j
l ) ∈ ∆.

The idea behind the formulation of J is that for a fixed
k (that is, fixed (k − 1)-simplex), a higher penalty is as-
signed via Cθ to the simplex with a greater diversity of
labels and vice versa, and we sum the penalties over all
(k−1)-simplices, finally taking a weighted sum over Kk. This
leads us to expect that a probability distribution {pji}i∈I,j∈V
which minimizes J over ∆n will find a node labeling that
encourages the least diversity of labels within each simplex
on average. This is consistent with our model assumption
that the connection probability within the same label is higher
than between different labels in forming the network. Finally,
from a computational standpoint, solving the problem (5) may
necessitate a suitable initialization of the value pji ∈ ∆n. We
employ RW and use its solution as our initial value, which is
simple to compute through linear programs. This is the main
idea of this paper.

In this paper, we used an exponential base weight wk =
αk−1 with various base values α > 0, and the default value of
α is set to 1 leading to the constant weight. It is worth noting
that it can be shown E|Kk| ≤ 2k−1|V |kp

k(k−1)
2 for each k ≥ 2

in the PPM (constant probability p on the diagonal P and q
off the diagonal with p > q). This explains why, in many real-
world applications, higher-order simplicial structures become
increasingly difficult to observe as k increases, because p is a
small number of the order of k2. Also, for a fixed element in
Kk, the computational complexity in the objective function is
comparable to that of the multinomial expansion (a1 + · · ·+
ak)l which is O(lk).

Example 2. Let I = {1, 2} and let K3 be the set of all 2-
simplices in a given graph. Fix a member (j1, j2, j3) ∈ K3.
Then possible combinations for the binary labeling leads to
23 = 8 terms of the form pj1i1p

j2
i2
pj3i3 where i1, i2, i3 ∈ I , which

represents the probability that the nodes j1, j2, j3 have labels
i1, i2, i3, respectively. We impose a penalty of multinomial
order according to the distinct node labels within a given
simplex. For a 2-simplex, the objective with respect to two
labels classification, which is the third summation term in (4),
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(a) (b) (c)

Fig. 1. Configuration of the political book dataset. (a) indicates the data illustration using a graph, (b) presents the number of k-simplices, and (c) illustrates
the connection probabilities between three labels: C (49 conservative books), L (43 liberal books), and N (13 neutral books).

consists of the following eight terms:(
3

3, 0

)
pj11 p

j2
1 p

j3
1 +

(
3

2, 1

)
pj11 p

j2
1 p

j3
2 +

(
3

2, 1

)
pj11 p

j2
2 p

j3
1

+

(
3

2, 1

)
pj12 p

j2
1 p

j3
1 +

(
3

1, 2

)
pj11 p

j2
2 p

j3
2 +

(
3

1, 2

)
pj12 p

j2
1 p

j3
2

+

(
3

1, 2

)
pj12 p

j2
2 p

j3
1 +

(
3

0, 3

)
pj12 p

j2
2 p

j3
2 ,

and of course,
(

3
3,0

)
=
(

3
0,3

)
= 1,

(
3
2,1

)
=
(

3
1,2

)
= 3, and

pj1 + pj2 = 1.
Now consider an edge-probability matrix P that has a

constant probability p on the diagonal and q off the diagonal.
Let |V | = 3N and I = {1, 2, 3} such that the number of nodes
corresponding to three labels is N each (i.e., |C1| = |C2| =
|C3| = N .) Then the expected number of 2-simplices (that is,
|K3|) in a random graph generated under P is given by(

3

1

)(
N

3

)
p3 + 2!

(
3

2

)(
N

1

)(
N

2

)
pq2

+

(
3

3

)(
N

1

)(
N

1

)(
N

1

)
q3,

where
(
3
1

)(
N
3

)
p3 is the expected number of 2-simplices

with three vertices in the same group Ci, i = 1, 2, 3,
2!
(
3
2

)(
N
1

)(
N
2

)
pq2 is the expected number of 2-simplices with

two vertices in the same group but one in another, and(
3
3

)(
N
1

)(
N
1

)(
N
1

)
q3 is the expected number of 2-simplices with

three vertices in all different groups. The sum consists of
2k−1 = 4 terms, with the second term counted twice. Each
term is bounded by |I|k(|V |/|I|)kp

k(k−1)
2 = |V |kp

k(k−1)
2 since

p > q, hence the sum is bounded by 2k−1|V |kp
k(k−1)

2 .

IV. EXPERIMENTAL SETUP

A. Data

In this study, we generate graphs using PPM in order
to evaluate the proposed objective function in higher-order
networks. First, a balanced graph is generated with |I| = 3

and |V | = 150, that is, there are 50 nodes corresponding to
each label. The diagonal constant probability p of the edge
probability matrix P is evaluated in the range 0.1 ≤ p ≤ 0.2,
while the off diagonal probability constant q is evaluated in
0.01 ≤ q ≤ 0.025. Furthermore, for semi-supervised node
classification, the RW algorithm (as discussed in Section II-B)
is employed as the initial probability distribution method over
the nodes, and prior information ratio (the proportion of nodes
whose labels are revealed) is assessed in the range from 0.01
to 0.10. Second, for an imbalanced graph with |I| = 3 and
|V | = 120, the number of nodes corresponding to each label
are set to be 60, 40, and 20. The initial probability distribution
method as well as ranges of p, q, and prior information ratio
remain consistent with the balanced experiment.

We utilize the co-purchase dataset of political books [22],
[35] to further evaluate using a real dataset. The dataset
captures the co-purchase records of 105 political books on
Amazon during the 2004 U.S. president election period. Each
book belongs to one of three labels: conservative (49 books),
liberal (43 books), or neutral (13 books). Since edges represent
frequent co-purchasing of books by the same buyers, this
data set encapsulates various higher-order networks. It is
noteworthy to report that the average connection probability
between the same labeled nodes and different labeled nodes is
0.172 and 0.021, respectively. One node is chosen at random
from each label and used as prior information, resulting in a
prior information ratio of 0.029. The RW algorithm is also
used for node initialization. The configuration of the data set
is presented in Figure 1.

B. Optimization method

Sequential Quadratic Programming (SQP) [39], [40] is an
iterative method used for constrained nonlinear optimization.
The basic idea is to solve sequence of quadratic programming
subproblems that approximates the original nonlinear problem.
Each iteration of SQP refines the approximation and moves
closer to the solution of the nonlinear problem. Sequential
Least SQuare Programming (SLSQP) [41], [42], which is
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employed as our optimization method, is a variant of SQP,
and it utilizes an approximate quadratic form of the objective
function and constraints, transforming the problem into a
constrained least square problem. SLSQP internally employs
the quasi-Newton method to approximate the quadratic form
of the objective function. This approach enhances efficiency
by using an approximation instead of calculating the actual
Hessian matrix (second derivative of the objective function.)
It is known that SLSQP requires O(n2) storage and O(n3)
time in n-dimensions [40].

C. Error metrics

Precision, Recall, F1-score, and Accuracy are employed
as error metrics to evaluate the performance of the proposed
objective function. In a multi-label classification, the concepts
of the above error metrics remain fundamentally the same as in
binary classification, but they can be computed for each label
individually, that is, one vs rest. Let TP, TN, FP, and FN be
the number of true positive, true negative, false positive, and
false negative, respectively. Then the error metrics are defined
by

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1-score =
2 ∗ Recall ∗ Precision

Recall + Precision
,

Accuracy =
TP + FN

TP + TN + FP + FN
.

In addition, Area Under Curve (AUC) is employed as an error
metric. AUC denotes the area under the curve that plots the
true positive rate (defined by TP/(TP+FN), that is Recall)
against the false positive rate (defined by FP/(FP+TN)) at
various threshold settings. AUC values of 1 and 0.5 indicate
perfect classification and no better than random guessing of
the algorithm, respectively.

V. RESULTS

In this section, we evaluate the node classification perfor-
mance of the proposed higher-order networks-based method
(5) on balanced generated data (Section V-A), imbalanced gen-
erated data (Section V-B), and imbalanced real data (political
book data in Section V-C). We compare the performance of (5)
(which we will call SI, standing for Simplicial Interactions)
with the RW algorithm and with the following algorithm
(PI), which uses an objective function involving only pairwise
interactions

Minimize J2 over ∆n, where (6)

J2 =
∑

(j1,j2)∈K2

∑
(i1,i2)=θ∈S2

Cθp
j1
i1
pj2i2 .

Problems (5) and (6) are both solved using RW for initializa-
tion, that is, the initial probability distribution {pji}i∈I,j∈V is
obtained as the solution (3) to the Dirichlet problem (2).

The evaluation is conducted on the ranges of p, q and
prior information ratio described in Section IV-A with respect

to five error metrics AUC, Precision, Recall, F1-score, and
Accuracy where p, q indicates the constant probability of
the edge probability matrix in PPM at on, off diagonal,
respectively. Result summary and discussion is presented in
Section V-D. The implementation algorithm can be found at
https://github.com/kooeunho/HOI objective.

A. Balanced experiment

In this experiment, for the diagonal constant on and off
probability (p, q) of the edge probability matrix P in PPM,
three values of p = 0.10, 0.15, 0.20 and four values of
q = 0.010, 0.015, 0.020, 0.025 are tested. Also, the prior
information ratio is tested with 0.01, 0.04, 0.07, and 0.10.
Because the experiment selects the prior information (the
nodes whose labels are exposed) randomly, we conduct 10
experiments for each value of p, q, and prior information ratio.
Then the performance of the objective function is evaluated
based on the averaged value of the 10 experiments with respect
to the five error metrics. Overall averaged experimental result
is presented in Figure 2. The result demonstrates that the per-
formances of RW and PI are comparable. Thus, we primarily
report the performance gain of the experiment applying SI in
comparison to the mean performance of the RW and PI with
respect to five error metrics in Figure 3. There is a trend that
the gains are greater when p is lower, q is higher, and the prior
information ratio is lower, implying that SI obtains additional
performance gains when the network structure information and
the amount of prior information are unclear and limited.

B. Imbalanced experiment

The hyperparameter setting (p, q and prior information ratio)
is the same as in the balanced experiment. Figure 4 depicts the
overall averaged experimental result in terms of hyperparam-
eters and five error metrics. Figure 5 depicts the performance
gains. The characteristic feature is that the results of experi-
ments applying SI exhibit lower Precision and higher Recall
compared to those using RW and PI. In essence, this means
there are more false positives and less false negatives with
SI. Such characteristics are critical when selecting algorithms
for medical tests where, while there may be misidentifications
of disease presence (false positives), missing an actual case
(false negatives) can have serious consequences. In imbalanced
experiments, we find that experiments using SI outperform
experiments using RW and PI in accurately identifying labels
corresponding to a minority of nodes, rather than classifying
a majority of nodes under specific labels that encompass
many nodes. When analyzing the results of many experiments
involving imbalanced data, several factors come into play,
such as the significance of minority labels and the balance
between Precision and Recall. In these circumstances, the F1-
score is frequently regarded as a reliable error metric [43].
The average percentage performance gain in F1-score for all
hyperparameters in this experiment is 61.49 (Figure 5).

C. Political books

As described in Section IV-A, the political book data set
is imbalanced (49 conservative books, 43 liberal books, and
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Fig. 2. Experimental result on balanced generated graphs. The generated graphs consist of three labels, with 50 nodes for each label, totaling 150 nodes. Row
and column correspond to homo-connection probability p and hetero-connection probability q. Blue, green, and red indicate the performance with respect to
AUC (first left plot in each panel), Precision (second), Recall (third), F1-score (fourth), and Accuracy (fifth). In each left panel, x-axis indicates the prior
information ratio. Gray bars denote the number of k-simplices for each p and q.

13 neutral books). For the semi-supervised experiment, one
node is randomly chosen from each label, resulting in a prior
information ratio of 0.029. The percentage performance gain
of the SI compared to the mean performance of RW and
PI with respect to AUC, Precision, Recall, F1-score, and
Accuracy is found to be 29.18, 0.69, 105.04, 52.46, and 50.95,
respectively (Figure 6(a)). The trend of the gain being lower
in Precision and higher in Recall and F1-score is consistent
with the findings in Section V-B.

To fully investigate the fact that the political book data has
5-simplices as its maximal dimensional simplex, we evaluate

the objective function’s performance using up to Km (the set
of (m− 1)-simplices in the graph) for each m = 2, 3, 4, and
6. That is, we also consider the following optimization

Minimize Jm over ∆n, where (7)

Jm =

m∑
k=2

wk
∑

(j1,...,jk)∈Kk

∑
(i1,...,ik)=θ∈Sk

Cθp
j1
i1
pj2i2 . . . p

jk
ik
,

and call it SI-m. Thus SI-2 = PI and SI-6 = SI. We omit SI-
5 because the difference between SI-5 and SI-6 is expected
to be small due to the scarcity of 5-simplices. In addition, for
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Fig. 3. Performance gains of the balanced experiments applying SI in comparison to the mean performance of the RW and PI. Orange, yellow, lime, purple,
and violet indicate AUC, Precision, Recall, F1-score, and Accuracy, respectively. Left, middle, and right correspond to the gains with respect to all candidates
of homo-connection probability, hetero-connection probability, and prior information ratio, respectively.

wk = αk−1, we evaluate performance using α-values of 1, 1.5,
2, and 2.5. In other words, we assess the performance of the
objective function that assigns more weights as k increases.
The overall experimental results are shown in Figure 6(b),(c).
The AUC performance gain of SI-3, SI-4, and SI over the
mean performance of RW and PI is 30.94, 28.34, and 31.64,
respectively. For Precision, 2.27, 3.53, and 3.12. For Recall,
110.16, 114.31, and 112.91. For F1-score and Accuracy, 55.53,
58.00, 57.19, and 53.78, 56.61, 55.19, respectively. It is found
that the ratio of increase in performance gain diminishes con-
siderably as k increases. Furthermore, the performance gains
of AUC for α = 2.5 against for α = 1, 1.5, and 2 is found to
be 0.011, 0.004, and -0.002, respectively. For Precision, 0.019,
0.011, and 0.001. For Recall, 0.039, 0.022, and 0.002. For
F1-score and Accuracy, 0.029, 0.016, 0.001, and 0.026, 0.020,
0.003, respectively. This result demonstrates that placing more
weight on higher-order networks can be beneficial in achieving
additional performance gains. It also shows that the weight is
one of the important hyperparameters in the proposed higher-
order networks-based objective function.

D. Summary and discussion

We examined the performance of the proposed objective
function (4) in a variety of contexts, including balanced,
imbalanced, and political books datasets. Several notable ex-
perimental results and discussions are listed below.

First, it is evident that nodes corresponding to each label
become more distinguishably separated in node classification
tasks as the homo-connection probability (p) increases, the
hetero-connection probability (q) decreases, and as the prior
information ratio increases, facilitating community detection.
However, the proposed function showed significant perfor-
mance gains in the opposite scenario (lower p, higher q,
and smaller prior information ratio) over all error metrics.

This trend is consistent across both balanced and imbalanced
experiments, implying the proposed objective function can
be used in difficult classification settings, such as detecting
overlapping communities.

Second, in imbalanced datasets (covering both generated
and real data sets), experiments using all higher-order net-
works (dubbed SI) showed a performance gain with lower
Precision but higher Recall and F1-score than the counterparts
such as RW and PI. Because of this feature of the proposed
objective function, it is applicable in many domains where
precise classification of false negatives is critical, even if it
comes at the cost of some false positives.

Third, according to the results from the political book real
data, as we applied the objective function up to Kk (the set
of (k − 1)-simplices in the graph), there is an improving
trend as k increases with respect to the five error metrics.
However, this rate of growth showed diminishing returns. This
implies that using all higher- order networks in the proposed
objective function may be inefficient when compared to using
up to a specific size of simplices. There is a need for research
methodologies that select a small number of simplices while
maintaining comparable node classification performance.

Fourth, increasing the weight parameter (wk in (4)) assigned
to each Kk as k increases resulted in additional performance
gain (Figure 6(b)). While this study used exponential weight
parameters, further research into other types of weight param-
eters and their effects on performance is desired.

Fifth, the proposed objective function includes a domain
constraint: the condition

∑l
i=1 p

j
i = 1 must be satisfied, where

pji denotes the probability of node j having label i. Although
there are ongoing neural network-based studies for optimizing
objective functions with constraints [44], it is expected that
when there are many nodes and labels, the number of param-
eters required for neural networks will be substantial. Because
this study used the SLSQP optimization method without GPU
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Fig. 4. Experimental result on imbalanced generated graphs. The generated graphs consist of three labels, with 60,40, and 20, totaling 120 nodes. Row
and column correspond to homo-connection probability p and hetero-connection probability q. Blue, green, and red indicate the performance with respect to
AUC (first left plot in each panel), Precision (second), Recall (third), F1-score (fourth), and Accuracy (fifth). In each left panel, x-axis indicates the prior
information ratio. Gray bars denote the number of k-simplices for each p and q.

acceleration, computational efficiency for large datasets with
many nodes is limited. The development of neural network-
based constrained optimization methodologies will be crucial
for applying the proposed objective function to large real-
world datasets.

Finally, for initialization in our node classification task (5),
we used random walk and equilibrium measure-based Dirich-
let boundary value approach. Many previous probability-based
node classification studies focused on pairwise interactions or
random walks, but they frequently overlooked higher-order in-
teractions (HOI). Our findings show that when combined with

HOI, the objective function can outperform in various PPM
parameters when compared to the objectives relying solely
on pairwise interactions. As a result, we believe that using
previously trained node distributions from probability-based
research as initial node distributions can improve performance
when applying HOI to our proposed objective function.

VI. CONCLUSION

In this paper, we propose a probability-based objective
function for semi-supervised node classification that takes
advantage of simplicial interactions of varying order. Given
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Fig. 5. Performance gains of the imbalanced experiments applying SI in comparison to the mean performance of the RW and PI. Orange, yellow, lime,
purple, and violet indicate AUC, Precision, Recall, F1-score, and Accuracy, respectively. Left, middle, and right correspond to the gains with respect to all
candidates of homo-connection probability, hetero-connection probability, and prior information ratio, respectively.

(a) (b)

(c)

Fig. 6. Experimental results on political book real dataset. (a) illustrates the performance change when applying up to k-simplices in the objective function
as k increases. (b) depicts the Accuracy gain when using SI (= SI-6) over RW, PI, SI-3, and SI-4 with varying weight parameter. (c) compares performance
based on the weight base and the size of the applied simplices.

that densely connected nodes are likely to have similar prop-
erties, our proposed loss function imposes a greater penalty
when nodes connected via higher-order simplices have di-
versified labels. For a given number of labels l, each node
is equipped with an l-dimensional probability distribution.
Using the Sequential Least SQuare Programming (SLSQP)
optimization method, we seek the distribution across all nodes
that minimizes the objective function under the constraint
that the sum of node probabilities is one. Evaluations of our
proposed function are carried out on balanced and imbalanced
graphs generated using planted partition model (PPM), as

well as on the political book real dataset. In challenging
classification scenarios, where the probability of connections
within the same label is low, the probability of connections
between different labels is high, and there are fewer nodes with
pre-known labels, incorporating higher-order networks into our
proposed function outperforms results obtained by using only
pairwise interactions or the random walk-based probabilistic
method. Notably, while Precision is moderate for imbalanced
data, both Recall and F1-score are significantly improved with
our approach. This suggests potential applications in contexts
like medical tests where minimizing false negatives, even at the
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expense of some false positives, is imperative. This study was
framed within the optimization of functions with constraints,
presenting a limitation: we cannot currently conduct GPU-
based experiments, making it difficult to apply to real datasets
with a large number of nodes. The advancement of research in
neural network-based constrained optimization will allow us
to apply our proposed objective function to large-scale real-
world datasets, paving the way for future work.
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