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Node classification in networks via simplicial
interactions

Eunho Koo and Tongseok Lim

Abstract—In the node classification task, it is natural to
presume that densely connected nodes tend to exhibit similar
attributes. Given this, it is crucial to first define what constitutes
a dense connection and to develop a reliable mathematical tool
for assessing node cohesiveness. In this paper, we propose a
probability-based objective function for semi-supervised node
classification that takes advantage of higher-order networks’
capabilities. The proposed function reflects the philosophy aligned
with the intuition behind classifying within higher order net-
works, as it is designed to reduce the likelihood of nodes
interconnected through higher-order networks bearing different
labels. Additionally, we propose the Stochastic Block Tensor
Model (SBTM) as a graph generation model designed specifically
to address a significant limitation of the traditional stochastic
block model, which does not adequately represent the distribution
of higher-order structures in real networks. We evaluate the
objective function using networks generated by the SBTM, which
include both balanced and imbalanced scenarios. Furthermore,
we present an approach that integrates the objective function
with graph neural network (GNN)-based semi-supervised node
classification methodologies, aiming for additional performance
gains. Our results demonstrate that in challenging classifica-
tion scenarios—characterized by a low probability of homo-
connections, a high probability of hetero-connections, and lim-
ited prior node information—models based on the higher-order
network outperform pairwise interaction-based models. Further-
more, experimental results suggest that integrating our proposed
objective function with existing GNN-based node classification
approaches enhances classification performance by efficiently
learning higher-order structures distributed in the network.

Index Terms—Node classification, semi-supervised, simplex,
clique, node interaction, higher-order networks, hypergraph,
probabilistic objective function.

I. INTRODUCTION

Networks represented by graphs consist of nodes represent-
ing entities of the system, and edges depicting their interac-
tions. Such graphical representations facilitate insights into the
system’s modular structure or its inherent communities [1], [2].
While traditional graph analysis methods only considered pair-
wise interaction between nodes, recent researches, including
those in social sciences [3] and biochemical systems [4], have
experimentally demonstrated that networks in real systems
often rely on interactions involving more than two nodes or
agents. As a result, to analyze the attributes of a network,
it is essential to illuminate the causal interactions of the
network using higher-order networks (or hypergraphs) beyond
pairwise relationships [5]. There are various approaches to
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address this point of view, and recent studies are elucidating
the relationships between cliques (a subset of nodes such
that every two distinct nodes in the clique are adjacent)
that form higher-order networks using probabilistic modeling
based on the Stochastic Block Model (SBM) [6]–[8]. SBM
is a generative model for random graphs that includes the
following parameters: the number of nodes, the number of
disjoint communities to which each node belongs, and the
probability of edge connections between each community. The
most common form of SBM assumes that the number of nodes
in each community and the probability of edge connections
within the same community are equal; nevertheless, several
modified variants of SBM have also been studied [9], [10].

Studies related to community detection (or network cluster-
ing), on the other hand, have also been actively pursued [11].
The goal of these studies is to divide the entire system’s nodes
into several communities, with nodes in each community being
densely connected internally [12]. Research involving the
higher-order network analysis has also advanced in this field,
including the Bayesian framework [13], d-wise hypergraph
SBM on the probability of a hyperedge [14], the sum-of-
squares method of SBM [8], and spectral analysis based on the
Planted Partition Model (PPM), a variant of SBM [7], [15].
Notably, many studies solely evaluate the network’s internal
topology and do not account for prior information. However,
in many real-world networks, even if it is a small part of the
overall number of nodes, prior information is available; that is,
we can use some known node labels as well as the total number
of labels (communities). It has been reported that with only
limited prior information, prediction accuracy and robustness
in real noisy networks can be significantly improved [16], [17],
and various methods have been suggested, including discrete
potential theory method [18], spin-glass model in statistical
physics application [16], strategies integrating known cluster
assignments for a fraction of nodes [19], and nonnegative
matrix factorization model [17]. Recently, the integration of
semi-supervised learning with Graph Neural Network (GNN)
has significantly enhanced performance of node classification
on large datasets. Graph Convolutional Network (GCN) [20]
generates new node representations by aggregating features
from nodes and their neighbors. Graph-SAGE [21] introduces
an inductive learning approach using node sampling and aggre-
gation. Graph Attention Network (GAT) [22] apply attention
mechanisms to neighboring nodes, and Jumping Knowledge
Network (JKNet) [23] and Motif Graph Neural Network [24]
collect information from an extended neighborhood range.

In this study, we propose a novel probability-based objective
(loss) function for the semi-supervised node classification
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(community detection) task using higher-order networks. The
loss function is motivated by the intuition that nodes densely
interconnected with edges in a given network are likely to
exhibit similar labels. It is intended to incentivize nodes in a
hyperedge (a clique) to have the same label by imposing a
natural penalty when nodes within the hyperedge have diverse
labels. It is worth noting that the intuition is consistent with
SBM’s general assumption that nodes with the same label
are more likely to be connected in a network. In conjunction
with the objective function, we use discrete potential theory
to initialize the node probability distribution, specifically the
solution to an appropriate Dirichlet boundary value problem
on graphs, which can be effectively solved using the concept
of equilibrium measures [25].

We also propose a novel graph generation model, Stochastic
Block Tensor Model (SBTM). In general, traditional SBM-
generated networks differ significantly from many real-world
networks. Specifically, when comparing networks of equiva-
lent density (that is, networks with an identical count of nodes
and edges), SBM-based models typically exhibit far fewer
higher-order polyhedrons (simplices or cliques), than what is
observed in real-world graphs. This limitation of SBM stems
from its nature as an edge-generation model. For example, in
social networks, while two people might form a friendship, it
is also possible for three or more individuals to simultaneously
establish a friendship. In light of this, we suggest that edge-
generation models (SBM) have limits in producing network
data that is similar to what is observed in the real world, and
we offer a revised model capable of incorporating higher-order
structures such as triangles and tetrahedrons into the network.

Finally, we propose a method that achieves additional per-
formance enhancements by integrating our proposed objec-
tive function with state-of-the-art (SOTA) GNN-based semi-
supervised learning techniques. To the best of the authors’
knowledge, many SOTA algorithms do not distinctively utilize
all higher-order structures within graphs, but often focusing
primarily on edges (pairwise interactions) instead. We explore
how combining the strengths of both approaches can lead to
further performance gains, and we validate this synergy on
real citation network datasets (Cora, CiteSeer, and PubMed).

Our contributions are as follows:

• We propose a novel probability-based objective function
for the semi-supervised node classification task, designed to
leverage the full higher-order network structures.

• We extend SBM and introduce SBTM, a network gener-
ation model designed to simulate more realistic networks by
incorporating higher-order structures.

• We explore and validate an approach for improving per-
formance by combining the most recent graph neural network-
based node classification methods with the objective function
suggested in this paper.

This paper is structured as follows. Some preliminary in-
formation is provided in Section II. The objective function is
discussed in Section III. The experimental setup is described
in Section IV. The result is evaluated in Section V. Finally, in
Section VI, the conclusion and future work are presented.

II. PRELIMINARIES

In this section, we describe the preliminary graph node
classification approach based on discrete potential theory after
introducing some essential mathematical concepts.

A. Higher-order networks

In many real-world systems, network interactions are not
only pairwise, but involve the joint non-linear couplings of
more than two nodes [26]. Here, we fix some terminology on
higher-order networks that will be used throughout the paper.

A (undirected) graph G = (V,E) consists of a set V =
{1, 2, ..., n} of n nodes, and a set E ⊂ {(i, j) | i, j ∈ V, i ̸= j}
of edges. We have (i, j) = (j, i) = {i, j} as G is undirected.
We assume that a graph G is connected.1

A hypergraph generalizes E as E ⊂ 2V where 2V denotes
the power set of V , and we denote the hypergraph as H =
(V, E). In this paper, we focus on the case where E consists of
the simplices in G: For k ∈ N ∪ {0} (the set of non-negative
integers), a subset σ = {n0, n1, ..., nk} of V is called a k-
simplex (which is also called a (k + 1)-clique) if the vertices
ni ∈ V are distinct (i.e., |σ| = k + 1) and for every 0 ≤
i < j ≤ k, we have (ni, nj) ∈ E. Let Kk = Ek−1 denote
the set of all k-cliques, or (k − 1)-simplices, in G. Note that
E0 = V , E1 = E; a node is a 0-simplex, an edge a 1-simplex,
a triangle a 2-simplex, a tetrahedron a 3-simplex, and so on.
The set comprising all cliques of a graph G,

K(G) :=

ω(G)⋃
k=1

Kk(G), (1)

is called the clique complex of the graph G. The clique number
ω(G) is the number of vertices in a largest clique of G [27].
In this paper, we will consider E a subset of K(G) in terms
of a hypergraph.

Example 1. For a given V = {1, 2, 3, 4}, consider E ={
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}
.

2

1

3 4

There are four 0-simplices: K1 = {{1}, {2}, {3}, {4}};
four 1-simplices: K2 = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}; and
one 2-simplex: K3 = {{1, 2, 3}}.

B. Classification algorithm based on random walk on graphs

In the semi-supervised node classification (partially labeled
data classification) tasks, a classic and widely used algorithm
based on a random walk on a graph is the following. Given
a graph G = (V,E), a (unbiased) random walk moves from

1Because our proposed algorithm can be applied to each connected com-
ponent of a graph, the assumption can be made without loss of generality.
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i ∈ V to j ∈ V with probability 1/k if (i, j) ∈ E (i.e., i and j
are adjacent) and the degree of i (the number of nodes adjacent
to i) is k. For a node set V = {1, 2, . . . , n} and a label-index
set I = {1, . . . , l}, we assume that each node corresponds
to one label in I and we know the labels for only a small
proportion of nodes relative to |V | = n. For i ∈ I and y ∈ V ,
let Pi(y) denote the probability that a random walk starting
from an unlabeled node y will reach an i-labeled node before
arriving at any other labeled nodes. If argmaxi∈I Pi(y) = k,
the algorithm predicts that the label of the unlabeled node y
is k. If a node y is already labeled as k, we have Pi(y) = 1
if i = k and Pi(y) = 0 if i ̸= k. In this study, we refer to this
algorithm as RW, which stands for Random Walk.

Now the question is how to obtain Pi(y) for all y ∈ V and
i ∈ I . Potential theory shows Pi(y) can be obtained from the
solution u of the following Dirichlet boundary value problem

Lu(x) = 0 if x ∈ F = (Ei ∪Hi)
c, (2)

u(x) = 1 if x ∈ Ei,

u(x) = 0 if x ∈ Hi,

where L = D −A is the graph Laplacian matrix where D,A
are degree and adjacency matrix of a given graph G (see [27]),
Ei is the set of i-labeled nodes, Hi is the set of labeled nodes
excluding i-labeled nodes, and u is a function on V , valued
in [0, 1]. Then it holds Pi(y) = u(y) for all y ∈ V .

Bendito, Carmona and Encinas [25] proposed an elegant
solution to the Dirichlet problem (2) in terms of equilibrium
measures. For any decomposition V = F ∪ F c where F and
F c are both non-empty, they showed that there exists a unique
measure (function) such that Lv(x) = 1 (and v(x) > 0) for
all x ∈ F and Lv(x) = 0 (and v(x) = 0) for all x ∈ F c. The
measure is called the equilibrium measure and denoted by vF .
Now for V = F ∪ F c where F, F c are the set of unlabeled
and labeled nodes, the solution u of (2) can be represented by

u(x) =
∑
z∈Ei

v{z}∪F (x)− vF (x)

v{z}∪F (z)
, x ∈ V. (3)

Because vF can be obtained by solving a linear program, (3)
provides an efficient way to solve the Dirichlet problem (2);
see [25] for more details.

We will use RW as a baseline algorithm for the semi-
supervised node classification. Note that RW employs random
walks and does not utilize higher-order interactions (HOI).
However, RW will be useful not only for comparing perfor-
mance with our HOI-applied strategies, but also for providing
a useful initialization method for training HOI algorithms.

III. PROPOSED MODEL

A. Simplicial objective function

We propose a novel objective function for node classifica-
tion which utilizes higher-order networks. Given a graph G, let
V = {1, . . . , n} denote the node set, I = {1, . . . , l} denote the
label index set, so the graph consists of n nodes, and each node
j ∈ V has a label i ∈ I . Probability distribution over the labels
for the node j is denoted by (pj1, p

j
2, ..., p

j
l ), where pji denotes

the probability that node j having label i, thus
∑l

i=1 p
j
i = 1

for every j ∈ V . We define Kk as the set of (k−1)-simplices
in the graph, e.g., K1,K2,K3 correspond to the set of nodes,
edges, triangles, respectively. Let M = ω(G) be the maximum
possible value of k, that is, the simplex composed of the most
nodes in the graph is a (M − 1)-simplex with M nodes. Now
we define an objective function for node classification task by

J =

M∑
k=2

wk

∑
(j1,...,jk)∈Kk

∑
(i1,...,ik)=θ∈Ik

Cθp
j1
i1
pj2i2 . . . p

jk
ik

(4)

where Ik = I×· · ·×I (k times), wk ≥ 0 are weight hyperpa-
rameters, and Cθ :=

(
k

e1,e2,...,el

)
= k!

e1!e2!...el!
where ei is the

number of occurrences of the label i in (i1, i2, . . . , ik) = θ
with

∑l
i=1 ei = k. Hence J is determined by the underlying

graph structure, and is a function of probabilities {pji}i∈I,j∈V .
We then proceed to solve the minimization problem:

Minimize J over ∆n = ∆×∆× · · · ×∆ (5)

where ∆ is the probability simplex in Rl, such that pj :=
(pj1, p

j
2, ..., p

j
l ) ∈ ∆.

The idea is that a higher penalty is assigned via a multi-
nomial coefficient Cθ to the simplex with a greater diversity
of labels and vice versa, and we sum the penalties over all
(k−1)-simplices, finally taking a weighted sum over Kk. This
leads us to expect that a probability distribution {pji}i∈I,j∈V

minimizing J over ∆n will find a node labeling that en-
courages the least diversity of labels within each simplex on
average. This is consistent with our model assumption that
the connection probability within the same label is higher
than between different labels in forming the network. Finally,
from a computational standpoint, solving the problem (5) may
necessitate a suitable initialization of the value {pji} ∈ ∆n. We
employ RW and use its solution as our initial value, which is
simple to compute through linear programs. This is the main
idea of this paper and is illustrated in Figure 1.

In this paper, we use an exponential base weight wk = αk−1

in (4) with various base values α > 0, and the default value
of α is set to 1 leading to the constant weight. It is worth
noting that the expected number of k-cliques can be shown to
be bounded by E[|Kk|] ≤ 2k−1|V |kp

k(k−1)
2 , if the underlying

network is generated by a stochastic block model with an
edge-probability matrix with probability p on the diagonal and
q off-diagonal, where p > q. This explains why, contrast to
the many real-world network datasets, higher-order simplicial
structures become increasingly difficult to observe in SBM as
k increases, due to the above bounding estimate with small p.

Example 2. Let I = {1, 2} and let K3 be the set of all 2-
simplices in a given graph. Fix a member (j1, j2, j3) ∈ K3.
Then possible combinations for the binary labeling leads to
23 = 8 terms of the form pj1i1p

j2
i2
pj3i3 where i1, i2, i3 ∈ I , which

represents the probability that the nodes j1, j2, j3 have labels
i1, i2, i3, respectively. We impose a penalty of multinomial
order according to the distinct node labels within a given
simplex. For a 2-simplex, the objective with respect to two
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Fig. 1. Overall optimization process. First, we classify k-simplices (for k = 1, 2, . . . ) in a given network based on their sizes (Breaking Down). Then, we
multiply each size category by a distinct multinomial coefficient, sum these weighted values, and use this combined information to train a model (Training).
Finally, we evaluate the model’s classification performance (Classification).

labels classification, which is the third summation term in (4),
consists of the following eight terms:(

3

3, 0

)
pj11 pj21 pj31 +

(
3

2, 1

)
pj11 pj21 pj32 +

(
3

2, 1

)
pj11 pj22 pj31

+

(
3

2, 1

)
pj12 pj21 pj31 +

(
3

1, 2

)
pj11 pj22 pj32 +

(
3

1, 2

)
pj12 pj21 pj32

+

(
3

1, 2

)
pj12 pj22 pj31 +

(
3

0, 3

)
pj12 pj22 pj32 ,

where
(

3
3,0

)
=

(
3
0,3

)
= 1,

(
3
2,1

)
=

(
3
1,2

)
= 3, and pj1 + pj2 = 1.

As can be inferred from Example 2, in the computation
related to the edge set K2 in (4), the computational complexity
is O(|K2|2l) where |K2| is the number of edges in the
network, and l is the number of labels. In general, for each k-
clique set Kk, the computational complexity can be derived as
O(|Kk|kl), and therefore, the total complexity for all simplices
up to size M = ω(G) would be O(

∑M
k=2 |Kk|kl). Since the

complexity depends on the number of cliques in the network
and the number of labels, the complexity of the proposed
objective function increases with the inclusion of more higher-
order simplices and a greater number of distinct labels.

B. SBTM: a new graph generation approach

Initially conceptualized in social networks and bioinformat-
ics, Stochastic Block Model (SBM) [6] harnesses a probabilis-
tic approach, giving a simple generative model for random
graphs. For a node set and a label set V and I as above,
we consider l = |I| distinct labels or communities, each
being a non-empty disjoint subsets of V for each i ∈ I .
The connection probabilities between nodes in V by edges
is identified by a l × l edge-probability matrix B, where Bij

indicates the probability that a node belonging to the ith label
connects with a node in the jth label by an edge. In many
cases, the diagonal elements of B are greater than off-diagonal
elements, implying that the connection probability within the
same label is higher than between different labels.

However, SBM has notable limitations: it lacks strong
local clustering, failing to capture dense substructures like
triangles that are essential for representing complex network
dynamics. Additionally, SBMs assume edge independence,
which is unrealistic since real-world networks often exhibit
interdependencies among edges along with a combination
of hierarchical community structures [28]. When comparing
networks of equal density—networks with an identical number
of nodes and edges—SBM-based models generally yield far
fewer high-dimensional polyhedrons (simplifies or cliques)
than what is commonly observed in real-world networks.
This shortcoming arises from SBM’s foundation as an edge-
generation model, which limits its ability to form intercon-
nected groups beyond pairs. For example, in collaboration
networks where multiple individuals contribute to the same
project or publication, groups of three or more people often
establish simultaneous collaborative connections. Such higher-
order connections are challenging for traditional SBMs to
capture accurately. Consequently, edge-generation models like
SBM struggle to recreate the complex, interdependent struc-
tures present in real-world networks. To address this, in this
paper we present the Stochastic Block Tensor Model (SBTM),
a natural extension of SBM by assigning probability tensors
(rather than a single probability matrix) to generate k-cliques
for each k ≥ 2, facilitating the development of higher-order
simplices in the network. This leads to the emergence of
higher-order simplices in the synthetic network, resulting in
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networks that closely resemble real-world networks.
To explain the concept of SBTM, we recall that a SBM is

described by its probability matrix B ∈ Rl2 , whose (i, j) entry
Bij reflects the probability that nodes i and j are connected
by an edge in a random graph G. Each edge between i, j
is generated independently in G through Bij . Motivated by
this, for each k ≥ 2, let Tk ∈ Rlk be a probability tensor
whose (i1, . . . , ik) entry (Tk)i1,...,ik indicates the probability
that the nodes i1, . . . , ik are interconnected as a k-clique in
G. Given probability tensors T2, T3, ..., we assume that an
SBTM generates a random graph G as follows: for each k ≥ 2,
we generate k-cliques independently for every size-k subset
of V using Tk. Let Gk denote the graph that represents the
(unweighted) overlap of all randomly created k-cliques. The
final graph G is defined as the full overlap of all Gk. Note that
an edge between two nodes i, j can be generated more than
once in this procedure. In this paper, we assume that G is
unweighted, meaning that an edge between i, j exists in G if
and only if it is produced in at least one of Gk. However, one
can also define a weighted graph by counting the number of
edge generation between each pair of edges. As a result, SBM
is a specific instance of SBTM, with Tk ≡ 0 for all k ≥ 3.

Thus SBTM is given by a set of probability tensors (Tk)k≥2.
In this study, we will define these tensors as follows. Let N =
[N1, . . . , Nl] denote the number of nodes for each label. For
each k ≥ 2, we choose a probability matrix Bk ∈ Rl2 . Tk will
be defined using Bk. Given a sequence of labels (i1, ..., ik) =
θ ∈ Ik, we define the θ-entry of Tk, denoted by (Tk)θ, as

(Tk)θ :=

l∏
i=1

(
Ni

ei

) ∏
1≤a<b≤k

(Bk)iaib , (6)

where ei is the number of occurrences of label i in (i1, ..., ik).
For example, in 4-clique generation, if N = [N1, N2, N3] and
θ = (1, 1, 3, 1), then e1 = 3, e2 = 0, e3 = 1, and the entry at
(1, 1, 3, 1) in the tensor T4 is given by (6) with l = 3, k = 4.

The formula (6) is motivated from calculating the ex-
pected number of k-cliques in the traditional SBM: The first
term

∏l
i=1

(
Ni

ei

)
calculates the number of ways to select ei

nodes from each group of Ni nodes, and the second term∏
1≤a<b≤k(Bk)iaib is the product of the connection probabil-

ities provided by Bk between nodes in a k-clique. The second
term will be small if the clique has diversified labels because,
intuitively, the diagonal entries of Bk are larger than the off-
diagonal entries, reflecting a higher probability of connections
within the same cluster than between different clusters. By
assigning appropriate probabilities to each element of Bk, we
intend to systematically determine a probability value to each
entry of Tk, where it takes lower values for diversified labels
and vice versa for uniform labels.

C. Related works on graph semi-supervised learning

Graph semi-supervised learning (GSSL) is designed to
utilize inexpensive unlabeled data to improve the model’s
effectiveness using only a limited number of expensive labeled
data. Hence, the semi-supervised learning framework aligns
well with numerous practical scenarios where acquiring labels
is challenging. According to a taxonomy framework [29],

GSSL can be categorized into graph regularization methods,
matrix factorization-based methods, random walk-based meth-
ods, autoencoder-based methods, and GNN-based methods.

The graph regularization method in GSSL involves adding a
smoothness constraint to the prediction function, ensuring that
nodes with similar features have similar labels, often using the
graph Laplacian to enforce this constraint. Examples of graph
regularization methods include Gaussian random field [30],
local and global consistency [31], directed regularization [32],
linear neighborhood propagation [33], and manifold regular-
ization with cosine distance [34]. The matrix factorization-
based method in GSSL involves factorizing a matrix that
represents relationships between node pairs to obtain node
embeddings, utilizing matrices like the adjacency matrix or
the normalized Laplacian matrix to capture underlying graph
structures. Notable works in this category include locally
linear embedding [35], Laplacian eigenmaps [36], GraRep
[37], and HOPE [38]. The random walk-based method in
GSSL uses random walks to capture graph properties like
node centrality and similarity. Key works in this category
include DeepWalk [39], LINE [40], Planetoid [41], node2vec
[42], and VG-GCN [43]. The autoencoder-based method in
GSSL uses autoencoders to encode each node into a low-
dimensional embedding while preserving graph structure. Sig-
nificant autoencoder-based methods include structural deep
network integration [44], deep neural networks for learn-
ing graph representations [45], graph autoencoder [46], and
mGNN [47]. The GNN-based method in GSSL utilizes Graph
Neural Networks to generate node embeddings by aggregating
information from a node’s neighbors. Prominent GNN-based
methods include the graph neural network model [48], graph
convolutional network [20], deep sets [49], graph-SAGE [21],
graph attention network [22], jumping knowledge network
[23], simplifying graph convolutional networks [50], Motif
graph neural network (MGNN) [24], GDPNet [51], Infograph
[52], NeuralSparse [53], PTDNet [54], and SPC-GNN [55].

IV. EXPERIMENTAL SETUP

In this study, we utilize SBTM to generate balanced and
imbalanced graphs to evaluate the proposed objective function.
The maximum clique size M is set to 5 in each experiment.
The balanced graph is set with N = [200, 200, 200, 200, 200],
meaning |I| = 5, |V | = 1000, and the number of nodes
corresponding to each label is 200. The imbalanced graph
is set with N = [300, 300, 100, 100, 100, 100], thus |I| = 6
and |V | = 1000. Additionally, the k-clique probability matrix
Bk ∈ Rl2 for k = 2, 3, 4, 5 with different probability
entries are chosen for both balanced and imbalanced networks.
Detailed information is presented in Table I.

The diagonal and off-diagonal probability settings in (Bk)k
in both balanced and imbalanced graphs aim to investigate the
relationship between performance improvement and variations
in the number and distribution of higher-order simplices. The
experimental setting ranges k from 2 to 5, allowing the
performance of the proposed objective function to be tested
across a wide range of higher-order clique distributions.

We define SI-m (Simplicial Interactions up to order m) as
the experiment on the objective function utilizing up to Km
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Balanced Experiment, N = [200, 200, 200, 200, 200]

3-cliques Exp (SI-3) 4-cliques Exp (SI-4) 5-cliques Exp (SI-5)

Matrices used 𝐵2, 𝐵3 𝐵2, 𝐵3, 𝐵4 𝐵2, 𝐵3, 𝐵4, 𝐵5

Matrices

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቊ
0.01 𝑡𝑜 0.05 𝑖 = 𝑗

0.001 𝑡𝑜 0.005 𝑖 ≠ 𝑗

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቊ
0.01 𝑡𝑜 0.05 𝑖 = 𝑗

0.001 𝑡𝑜 0.005 𝑖 ≠ 𝑗

(𝐵4)𝑖,𝑗= ቊ
0.05 𝑡𝑜 0.1 𝑖 = 𝑗

0.005 𝑡𝑜 0.01 𝑖 ≠ 𝑗

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቊ
0.01 𝑡𝑜 0.05 𝑖 = 𝑗

0.001 𝑡𝑜 0.005 𝑖 ≠ 𝑗

(𝐵4)𝑖,𝑗= ቊ
0.05 𝑡𝑜 0.1 𝑖 = 𝑗

0.005 𝑡𝑜 0.01 𝑖 ≠ 𝑗

(𝐵5)𝑖,𝑗= ቊ
0.12 𝑡𝑜 0.17 𝑖 = 𝑗

0.012 𝑡𝑜 0.017 𝑖 ≠ 𝑗

Averaged total number of k-cliques, clique distributions of Intra-cluster, and number of inter-cluster cliques

avg. # 1-cliques 1000, 200, 200, 200, 200, 200 , 0 1000, 200, 200, 200, 200, 200 , 0 1000, 200, 200, 200, 200, 200 , 0

avg. # 2-cliques 2012, 300, 300, 300, 300, 300 , 512 2279, 351, 351, 351, 351, 351 , 524 2442, 380, 380, 380, 380, 380 , 542

avg. # 3-cliques 219, 39, 39, 39, 39, 39 , 24 370, 70, 70, 70, 70, 70 , 20 536, 102, 102, 102, 102, 102 , 26

avg. # 4-cliques 0, 0, 0, 0, 0, 0 , 0 35, 7, 7, 7, 7, 7 , 0 110, 22, 22, 22, 22, 22 , 0

avg. # 5-cliques 0, 0, 0, 0, 0, 0 , 0 0, 0, 0, 0, 0, 0 , 0 15, 3, 3, 3, 3, 3 , 0

Imbalanced Experiment, N = [300, 300, 100, 100, 100, 100]
3-cliques Exp (SI-3) 4-cliques Exp (SI-4) 5-cliques Exp (SI-5)

Matrices used 𝐵2, 𝐵3 𝐵2, 𝐵3, 𝐵4 𝐵2, 𝐵3, 𝐵4, 𝐵5

Matrices

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቐ

0.03 𝑡𝑜 0.04 𝑖 = 𝑗, 𝑖 = 1,2
0.06 𝑡𝑜 0.08 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.006 𝑡𝑜 0.008 𝑖 ≠ 𝑗

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቐ

0.03 𝑡𝑜 0.04 𝑖 = 𝑗, 𝑖 = 1,2
0.06 𝑡𝑜 0.08 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.006 𝑡𝑜 0.008 𝑖 ≠ 𝑗

(𝐵4)𝑖,𝑗= ቐ

0.04 𝑡𝑜 0.07 𝑖 = 𝑗, 𝑖 = 1,2
0.08 𝑡𝑜 0.14 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.008 𝑡𝑜 0.014 𝑖 ≠ 𝑗

(𝐵2)𝑖,𝑗= ቊ
0.01 𝑖 = 𝑗
0.001 𝑖 ≠ 𝑗

(𝐵3)𝑖,𝑗= ቐ

0.03 𝑡𝑜 0.04 𝑖 = 𝑗, 𝑖 = 1,2
0.06 𝑡𝑜 0.08 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.006 𝑡𝑜 0.008 𝑖 ≠ 𝑗

(𝐵4)𝑖,𝑗= ቐ

0.04 𝑡𝑜 0.07 𝑖 = 𝑗, 𝑖 = 1,2
0.08 𝑡𝑜 0.14 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.008 𝑡𝑜 0.014 𝑖 ≠ 𝑗

(𝐵5)𝑖,𝑗= ቐ

0.11 𝑡𝑜 0.14 𝑖 = 𝑗, 𝑖 = 1,2
0.17 𝑡𝑜 0.23 𝑖 = 𝑗, 𝑖 = 3,4,5,6

0.017 𝑡𝑜 0.023 𝑖 ≠ 𝑗

Averaged total number of k-cliques, clique distributions of Intra-cluster, and number of inter-cluster cliques

avg. # 1-cliques 1000, 300, 300, 100, 100, 100, 100 , 0 1000, 300, 300, 100, 100, 100, 100 , 0 1000, 300, 300, 100, 100, 100, 100 , 0

avg. # 2-cliques 2881, 821,821,153,153,153,153 , 627 3211, 899, 899, 195, 195, 195, 195 , 633 3392, 1027, 1027, 236, 236, 236, 236 , 594

avg. # 3-cliques 517, 144, 144, 38, 38, 38, 38 , 77 764, 212, 212, 65, 65, 65, 65 , 80 1260, 357, 357, 116, 116, 116, 116 , 82

avg. # 4-cliques 0, 0, 0, 0, 0, 0, 0 , 0 54, 15, 15, 6, 6, 6, 6 , 0 261, 77, 77, 26, 26, 26, 26 , 3

avg. # 5-cliques 0, 0, 0, 0, 0, 0, 0 , 0 0, 0, 0, 0, 0, 0, 0 , 0 40, 12, 12, 4, 4, 4, 4 , 0

Cora Citeseer Pubmed

The number of k-cliques, clique distributions of Intra-cluster, and number of inter-cluster cliques

avg. # 1-cliques 2708, [351, 217, 418, 818, 426, 298, 180], 0 3327, [264, 590, 668, 701, 596, 508], 0 19717, [4103, 7739, 7875] , 0

avg. # 2-cliques 5429, [534, 409, 827, 1175, 660, 417, 253], 1154 4732, [97, 452, 1041, 628, 689, 441], 1384 44324, [5212, 14563, 15790] , 8773

avg. # 3-cliques 1630, [144, 163, 309, 350, 219, 96, 82], 267 1167, [17, 121, 490, 117, 116, 54] , 252 12520, [1176, 3098, 5295] , 2951

avg. # 4-cliques 220, [15, 27, 32, 60, 30, 8, 13], 35 255, [1, 48, 164, 9, 5, 4], 24 3275, [327, 1052, 1205] , 691

avg. # 5-cliques 9, [0, 2, 0, 4, 0, 0, 0], 3 46, [0, 15, 30, 0, 0, 0] , 1 859, [88, 501, 139] , 131

avg. # 6-cliques 0, [0, 0, 0, 0, 0, 0, 0], 0 4, [0, 2, 2, 0, 0, 0], 0 217, [17, 157, 6] , 37

avg. # 7-cliques 0, [0, 0, 0, 0, 0, 0, 0], 0 0, [0, 0, 0, 0, 0, 0, 0], 0 31, [2, 20, 0] , 9

avg. # 8-cliques 0, [0, 0, 0, 0, 0, 0, 0], 0 0, [0, 0, 0, 0, 0, 0, 0], 0 1, [0, 0, 0], 1

TABLE I
BALANCED AND IMBALANCED SI-3, SI-4, SI-5 EXPERIMENT SETTINGS, BENCHMARK DATA, AND CLIQUE DISTRIBUTIONS IN EACH EXPERIMENT.
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Fig. 2. Accuracy gains for balanced SI-3, SI-4 and SI-5 experiments with respect to variations in homo-connection probability (left), hetero-connection
probability (middle), and prior information ratio in N=[200,200,200,200,200] setting. In left, diagonal of B3, B4, and B5 varies from 0.01 to 0.05, from 0.05
to 0.10, and from 0.12 to 0.17, respectively. In middle, off-diagonal of B3, B4, and B5 varies from 0.001 to 0.005, from 0.005 to 0.010, and from 0.012 to
0.017, respectively. In right, the performances are tested ranging from 10 known nodes (= prior information ratio 0.01) to 90 known nodes (PIR 0.09).

(the set of (m− 1)-simplices in the network) for m = 3, 4, 5.
More specifically, we define on the domain ∆n the objective

Jm =

m∑
k=2

wk

∑
(j1,...,jk)∈Kk

∑
(i1,...,ik)=θ∈Ik

Cθp
j1
i1
pj2i2 . . . p

jk
ik
,

noting that the sum is over k = 2 to m, thereby employing up
to (m− 1)-simplices in the graph. In particular, SI-2 utilizes
only pairwise interactions through edges in the network, and
the corresponding objective function becomes

J2 =
∑

(j1,j2)∈K2

∑
(i1,i2)=θ∈I2

Cθp
j1
i1
pj2i2 .

The experimental results show that the performances of RW
and SI-2 are comparable. Because of this, the average perfor-
mance of these two methods in experiments that do not utilize
higher-order networks will be presented as PI (Pairwise Inter-
actions). In this semi-supervised learning research, the prior
information ratio (the proportion of nodes whose labels are
revealed) is varied from 1% to 9%, and nodes corresponding
to the given prior information ratio are randomly sampled
for each cluster and used as label-aware nodes. The results
are evaluated for the performance gains achieved by SI-M
(where M = ω(G)) over the PI for each prior information
ratio. In this study, the accuracy gain is defined as the relative
performance improvement by y/x−1 where x and y represents
the accuracies obtained from PI and SI-M, respectively.

We adopt a transductive learning framework using three
well-known citation network datasets: Cora, Citeseer, and
Pubmed, as outlined by [56] and following the methodology
of [41] and [22]. These datasets include the Cora dataset with
2708 nodes, 5429 undirected citation edges, and 7 classes;
the Citeseer dataset comprises 3327 nodes, 4732 edges, and
6 classes; and the Pubmed dataset with 19717 nodes, 44338

edges, and 3 classes. In our experimental setup, documents
are represented as nodes, and citations are represented as
edges. The distribution of simplices in the benchmark dataset
is illustrated in Table I.

In the training process, Glorot initialization [57] is utilized
to initialize the parameters, and the Adam SGD optimizer [58]
is employed for optimization. For all experiments, the learning
rate is set to 0.4 and the number of epochs to 10. The proposed
objective function aims to learn the probability distribution
assigned to each node in the network. We apply the softmax
function to describe node probability distributions. At the end
of the training process, the argmax function is used to obtain
the final classification results. The performance is evaluated
using the accuracy error metric.

In this study, we introduce a simple and concise learning
process that assigns an l-dimensional probability distribution
to each node in a given network, categorizes the network’s
simplices by their size, and integrates them into objective
function (4) for training (Figure 1). Specifically, for a fixed
weight hyperparameter wk in (4), this research utilizes only the
learning rate and epochs as hyperparameters. As a result, the
proposed algorithm (which does not rely on node embedding
dimensions, number of layers in the neural network architec-
ture, number of units per layer, dropout rates, or activation
functions as hyperparameters) offers enhanced implementation
efficiency compared to the existing GNN architectures that
demand extensive hyperparameter tuning. Leveraging this effi-
ciency, we evaluate the proposed objective function exclusively
with training data (label-aware nodes) and test data (label-
unaware nodes) in our experiments involving both synthetic
graphs and real citation networks (Cora, Citeseer, Pubmed),
without the use of validation nodes.
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Fig. 3. Accuracy gains for imbalanced SI-3, SI-4 and SI-5 experiments with respect to variations in homo-connection probability (left), hetero-connection
probability (middle), and prior information ratio in N=[300,300,100,100,100,100] setting. In left, diagonal of B3, B4 and B5 varies from 0.03 & 0.06 to
0.04 & 0.08 (that is, the diagonal entries of B3 varies from [0.03, 0.03, 0.06, 0.06, 0.06, 0.06] to [0.04, 0.04, 0.08, 0.08, 0.08, 0,08]), from 0.04 & 0.08 to
0.07 & 0.14, and from 0.11 & 0.17 to 0.14 & 0.23, respectively. In middle, off-diagonal of B3, B4 and B5 varies from 0.006 to 0.008, from 0.008 to 0.014,
and from 0.017 to 0.023. In right, the performances are tested ranging from 10 known nodes (= prior information ratio 0.01) to 90 known nodes (PIR 0.09).

V. RESULTS

In this section, we evaluate the node classification perfor-
mance of the proposed higher-order networks based objective
function on balanced data (Section V-A), and imbalanced data
(Section V-B). In both sections, we primarily evaluate the ac-
curacy gain achieved by using the proposed objective function
with higher-order structures, compared to the performance of
PI (mean performance of RW and SI-2). Furthermore, we
discuss how the objective function can be combined with
various semi-supervised node classification methodologies to
achieve additional performance gains (Section V-C). Result
summary and discussion is presented in Section V-D. The
implementation algorithm can be found at https://github.com/
kooeunho/HOI objective.

A. Balanced experiment

We present the experimental results based on the balanced
experiment settings depicted in Table I. Three experiment
settings (SI-3, SI-4 and SI-5) are designed to generate higher-
order simplices encompassing 3-cliques, 4-cliques, and 5-
cliques, respectively. We compare the accuracy gains of our
proposed objective function, which utilizes the higher-order
simplices distributed across the network, with PI. Figure 2
illustrates the accuracy gains of our strategy relative to the PI
with respect to the homo-connection probability (diagonals of
Bk for each k = 3, 4, 5), the hetero-connection probability
(off-diagonals of Bk for each k = 3, 4, 5), and the prior
information ratio. The weight hyperparameter wk is set to 1 in
balanced experiments. The experimental results show that the
accuracy gains for the SI-3, SI-4 and SI-5 experiments are
2.17%, 3.15%, and 2.76%, respectively. This shows that the
proposed objective function enhances performance by utilizing

higher-dimensional simplices such as triangles, tetrahedrons
and pentachorons. Furthermore, according to Figure 2, greater
accuracy increases occur with lower homo-connection proba-
bilities, higher hetero-connection probabilities, and lower prior
information ratios. This implies that the objective function can
achieve significant additional performance gains by exploiting
higher-order structures in challenging scenarios where the net-
work structure is ambiguous and prior information is limited.

B. Imbalanced experiment
In the imbalanced experiments, the parameters of the SBTM

(that is, Bk for k = 3, 4, 5) differ from those in the balanced
experiments, as shown in Table I. We adjust these parameters
because our objective function aims to enhance node classifi-
cation performance by leveraging the higher-order structures
in the network, and a particular cluster containing too few of
these structures would not allow for an accurate evaluation of
the proposed function. The resulting distribution of k-cliques
in each cluster corresponding to the set parameters is presented
in Table I. The experimental results show that the accuracy
gains for the SI-3, SI-4 and SI-5 experiments against PI are
2.03%, 2.17%, and 1.84%, respectively. This result implies
that higher-order structures have a significant impact on node
classification performance as in the balanced experiments. Ad-
ditionally, the characteristic of the proposed objective function
to achieve more performance gains in challenging scenarios is
also evident in the imbalanced settings, as seen in Figure 3.

The weight hyperparameter wk on k-cliques in the objective
function (4) is designed to emphasize higher-order simplices
over lower-order ones. In the imbalanced experiments, addi-
tional tests employing wk = αk−1 (with α = 1, 2, 3, 4, 5) on
SI-5 experiments (Figure 4) show that mean accuracy gains
for SI-5 against PI are 2.02%, 2.35%, 2.49%, 2.55%, and

https://github.com/kooeunho/HOI_objective
https://github.com/kooeunho/HOI_objective
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Fig. 4. Accuracy gains on wk = αk−1 in the objective (4) for imbalanced SI-5 experiments with respect to variations in homo-connection probability (left),
hetero-connection probability (middle), and prior information ratio in N=[300,300,100,100,100,100] setting. In left, diagonal of B5 varies from [0.11, 0.11,
0.17, 0.17, 0.17, 0.17] to [0.14, 0.14, 0.23, 0.23, 0.23, 0,23]. In middle, off-diagonal of B5 varies from 0.017 to 0.023. In right, the performances are tested
ranging from 10 known nodes (= prior information ratio 0.01) to 90 known nodes (PIR 0.09).

2.58%, for α = 1, 2, 3, 4 and 5, respectively. Greater weights
on higher-order simplices lead to enhanced performance; how-
ever, incremental benefits diminish as α increases. Employing
the weighting strategy that favors higher-order cliques is sug-
gested to potentially improve node classification in imbalanced
networks, including those with long-tail distributions.

C. Integration of the objective function with GNN

In this subsection, we propose a method to enhance node
classification performance by integrating the objective function
proposed in this study with existing GNN-based node classi-
fication methods, which do not directly utilize higher-order
structures in training, including the latest semi-supervised
and unsupervised learning techniques. Existing methodologies
employ various strategies such as integrating random walks
with the Word2Vec model [39], adjusting exploration and
return variables of random walks [42], leveraging second-
order proximities between nodes [40], utilizing 3-motifs for
distinguishing high-order graph structures [24], or utilizing
attention mechanisms [22] to train embedding vectors for all
nodes in the network and ultimately validate classification
performance based on the output layer using simple neural
network structures like linear maps. To integrate our approach
with these, we apply the softmax function to the l-dimensional
output vector (where l = |I| is the number of clusters or labels)
of the existing architecture to create a probability distribution
for each node. We then set these distributions as the initial
parameters and use the proposed objective function to retrain.
In other words, we use the output of the GNN architectures via
softmax function instead of the RW to initialize our proposed
optimization method (5). This strategy allows us to leverage
(l-dimensional) classification vectors resulting from the trained
embedding vectors of GNN-based architectures and use these

Method Cora Citeseer Pubmed

Planetoid 75.7 % 64.7 % 77.2 %

Planetoid + Higher-order train 77.1 % 65.8 % 77.3 %

GCN 81.5 % 70.3 % 79.0 %

GCN + Higher-order train 83.1 % 71.6 % 79.0 %

GAT 83.0 % 72.5 % 79.0 %

GAT + Higher-order train 84.9 % 72.9 % 80.1 %

SGC 81.0 % 71.9 % 78.9 %

SGC + Higher-order train 84.8 % 71.9 % 78.9 %

TABLE II
SUMMARY OF ACCURACY RESULTS FOR BENCHMARK DATASETS.

classification vectors to learn the various higher-order struc-
tures included in the network using the proposed objective
function, potentially improving classification performance.

In this experiment, we integrate GNNs with the proposed
objective function and evaluate the performance gains using
the Cora, Citeseer, and Pubmed datasets. GAT [22] uses an
attention mechanism to learn node embeddings. The node
features are created using the bag-of-words representation of
documents, with the dimensions of the node features for Cora,
Citeseer, and Pubmed being 1433, 3703, and 500, respec-
tively. These features are used to learn embedding vectors
using a multi-head attention structure, and a linear map is
employed to generate outputs corresponding to the number
of clusters. In our method, the total training and validation
data used in [22]—640 for Cora, 620 for Citeseer, and 560
for Pubmed—are treated as the overall prior information. In
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contrast to [22], which evaluated performance using 1,000
test nodes for each dataset, we assess performance on all
remaining nodes not designated for training or validation. The
treatment is similarly applied to Planetoid [41] (transductive
experiment), GCN [20] (with 64 hidden units), and SGC [50].
Table II summarizes the results of the integration experiments.

D. Summary and discussion

In this paper, we examined the performance of the proposed
objective function (4) in a variety of contexts, including bal-
anced, imbalanced, and benchmark datasets. Several notable
experimental results and discussions are listed below.

First, SBTM is a graph generation model that enables con-
trol over the distribution of k-cliques in the created network.
Each element (Tk)θ of a k-tensor Tk ∈ Rlk reflects the
probability of creating a k-clique given the label distribution
θ. We generated Tk systematically from a l × l matrices Bk

using the formula (6) for each k ≥ 2. The motivation is that
by modifying the entries of Bk, one can effectively mimic
networks with clique distributions that reflect real networks.

Second, it is clear that nodes corresponding to each label
become more distinguishable in node classification tasks as the
homo-connection probability increases, the hetero-connection
probability decreases, and the prior information ratio rises,
facilitating community detection. Given this, it is interesting
that the proposed objective function showed significant per-
formance gains in the opposite circumstance (lower diagonal,
larger off-diagonal in Bk, and lower prior information ratio).
This tendency is consistent across both balanced and imbal-
anced studies, showing that the suggested objective function
can be applied in challenging classification scenarios, such as
recognizing overlapping communities.

Third, it is discovered that in the balanced PI experiment,
the nodes representing incorrect predictions are uniformly dis-
tributed across all labels. In contrast, in the imbalanced PI
experiment, nodes corresponding to incorrect predictions are
weighted toward label indices with more nodes than other
labels. Furthermore, experimental results show that the weight
parameter wk = αk−1 applied to k-cliques in the objective
function (4) yields that as α increases (meaning greater
penalties are applied to higher-order simplices), additional
performance gains are more pronounced in imbalanced net-
works than balanced ones. This suggests that the performance
gain obtained with the proposed objective function, which is
attributed to correcting the error distribution by using higher-
order simplices in the training process, combined with the
strategy of imposing larger penalties on higher-order simplices,
could be more effective in imbalanced scenarios.

Fourth, the learning strategy used in this study does not rely
on the many hyperparameters typically used in GNN-based
algorithms, such as node embedding dimensions, the depth of
the neural network architecture, the number of units in each
layer, dropout ratios, or activation mechanisms. Additionally,
experimental results on both synthetic networks and real
citation networks have shown that the standard deviation of
the results from each experiment using the proposed algorithm
is negligible. This demonstrates that the proposed algorithm

offers advantages in terms of consistency of results, stability,
simplicity, and generalization performance.

Fifth, as described in the objective (4), we use a strat-
egy where we first aggregate all k-cliques in a given network
for each k, calculate the errors, and then repeat for all
k = 2, 3, . . . ,M . After that, we combine all of the errors and
minimize the outcome. The multinomial coefficients (Cθ in
(4)) corresponding to the k-cliques differ for each k, making
it difficult to apply a uniform coefficient across different k
values. This variability prevents standardizing the method for
extracting the characteristics of cliques of different sizes in the
network into a single method. As a result, this characteristic
of the objective function acts as a barrier to parallelization.
We suggest that future research should focus on finding an
effective method for gathering higher-order simplices in the
network to enable parallel computing.

Sixth, according to experimental results with benchmark
data, using the training and validation data employed in
Planetoid, GCN, GAT, and SGC as prior information improves
mean accuracy by 2.2%, 0.7%, and 0.3% for Cora, Citeseer,
and Pubmed, respectively. The objective function used in this
study is intended to promote that all nodes forming higher-
order simplices exhibit similar node probability distributions.
As a result, if the network has a large number of inter-
simplices, where nodes producing higher-order simplices be-
long to distinct labels or clusters, achieving good performance
with the proposed objective function becomes challenging.
The proportions of inter-cluster simplices among all higher-
order simplices beyond 2-simplices are 16.4%, 18.8%, and
22.6% (therefore, intra-cluster simplices ratio would be 83.6%,
81.2%, 77.4%) for Cora, Citeseer, and Pubmed, respectively.
This observation explains why a higher accuracy improvement
is observed with Cora compared to Citeseer and Pubmed.

Seventh, in widely used real datasets such as Cora, Citeseer,
and Pubmed, the number of labels l is modest, allowing the
proposed algorithm’s time complexity to remain manageable,
and our method can be effectively applied without significant
computational concerns. However, for datasets with a large
number of labels, such as the Amazon Product Co-purchasing
Network [59], which contains hundreds or even thousands of
labels, the computational cost may be too high. Because our
algorithm’s complexity increases exponentially with l, it may
be impractical to utilize it on datasets with a large number
of labels. This constraint highlights the need for algorithmic
improvements to support applications with multiple labels.

Finally, this study demonstrated that the combination of
GAT with the proposed objective function improved clas-
sification performance on benchmark data. While numerous
recent advanced methodologies are being developed in the
field of semi-supervised learning, almost all of them do not
directly address higher-order simplices. If the given data sup-
ports the hypothesis of this study—densely connected nodes
tend to exhibit similar attributes—it is speculated that further
performance gains could be achieved by utilizing combinations
with state-of-the-art approaches such as MGNN and GAT.
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VI. CONCLUSION

In this paper, we propose a probability-based objective
function for semi-supervised node classification that takes ad-
vantage of simplicial interactions of varying order. Given that
densely connected nodes are likely to have similar properties,
our proposed objective function imposes a greater penalty
when nodes connected via higher-order simplices have diver-
sified labels. For a given number of distinct labels l, each node
is equipped with an l-dimensional probability distribution, and
we seek the distribution across all nodes that minimizes the
objective function under the constraint that the sum of node
probabilities is one. Furthermore, based on the recognition
that traditional stochastic block models do not adequately
mimic many real datasets, particularly in representing the
distribution of higher-order simplices within each cluster, we
propose the stochastic block tensor model (SBTM). For each
k ≥ 2, the SBTM uses probability parameters to control
the number of k-cliques within or between clusters, adjusting
the distribution of higher-order simplices in the network, thus
better reflecting real data characteristics. The evaluation of our
proposed function was conducted using graphs generated by
the stochastic (SBTM) and in integration with graph neural
network-based architectures (GAT). In challenging classifica-
tion scenarios, where the probability of connections within
the same label is low, the probability of connections between
different labels is high, and there are fewer nodes with known
labels, our proposed function integrating higher-order net-
works outperformed results from simple pairwise interactions
or random walk-based probabilistic methods. Especially in
imbalanced data, by adjusting the weight parameter within the
objective function, further accuracy gains were achieved when
the distribution of misclassified nodes was biased towards
certain label indices containing more nodes than other labels.
This offers potential applications in many node classification
problems in network data, when combined with several semi-
supervised studies that do not directly use higher-order sim-
plices dispersed in networks. Our suggested objective function,
which conducts different calculations depending on the size
of the simplices, confronts a computational challenge because
uniform operations cannot be applied to all simplices, making
GPU-based parallel computing approaches difficult to deploy.
Overcoming this limitation is proposed for future research.
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