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Abstract

A principal curve serves as a powerful tool for uncovering underlying structures of
data through 1-dimensional smooth and continuous representations. On the basis of
optimal transport theories, this paper introduces a novel principal curve framework
constrained by monotonicity with rigorous theoretical justifications. We establish
statistical guarantees for our monotone curve estimate, including expected empirical
and generalized mean squared errors, while proving the existence of such estimates.
These statistical foundations justify adopting the popular early stopping procedure in
machine learning to implement our numeric algorithm with neural networks. Compre-
hensive simulation studies reveal that the proposed monotone curve estimate outper-
forms competing methods in terms of accuracy when the data exhibits a monotonic
structure. Moreover, through two real-world applications on future prices of copper,
gold, and silver, and avocado prices and sales volume, we underline the robustness
of our curve estimate against variable transformation, further confirming its effec-
tive applicability for noisy and complex data sets. We believe that this monotone
curve-fitting framework offers significant potential for numerous applications where
monotonic relationships are intrinsic or need to be imposed.
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1 Introduction

A principal curve is recognized as a 1-dimensional manifold penetrating the middle of data

in Statistics. A general curve is mathematically defined as a vector of functions where

an index parameter draws the shape of each component function. For example, we can

parametrize a unit circle as (cos s, sin s), or a quadratic curve in R2 as a vector of (s, s2),

where s ∈ R denotes the index parameter. Similarly, a principal curve is a 1-dimensional

manifold of multivariate random variables whose probability law relies on the index param-

eter. A representative example is a multivariate Gaussian distribution whose mean vector

varies by the index parameter. In this regard, a principal curve captures the essential geo-

metric shape of data, and it also provides curve-sense summary statistics to analyze joint

relationships between variables rather than conditional relationships. The latter character-

istic of a principal curve can be particularly beneficial when causal relationships between

variables are ambiguous, which occurs a lot in numerous real-world problems.

Various fields harness such characteristics of a principal curve in data analysis. Banfield

and Raftery (1992) clustered principal curves to outline distinctive floes in a satellite image

as an image processing method. In the field of transportation, Einbeck and Dwyer (2011)

analyzed the relationship between vehicles’ speed and traffic flow by curves since the two key

variables are hardly seen to have a causal relationship with each other but rather a latent

variable traffic density associates the target variables. Also, for pathway-level analysis on

cancer progression, Drier et al. (2013) projected normal and tumor samples on a principal

curve estimated from the principal components of the two contrasting samples and showed

the distance along the curve between the samples reveals important findings on cancer data

analysis. Chen et al. (2015) employed a principal curve technique to detect and compare

cosmic filaments from densities of the galaxy and dark matter. For more examples of using
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principal curves for data analysis, we refer to Takei et al. (2021); Layton et al. (2022).

While the literature on a principal curve becomes more mature, the concept of a prin-

cipal curve constrained to exhibit a monotonic shape remains underexplored. Monotonic

relationships between variables are prevalent in numerous real-world scenarios, addressing

the practical importance of estimating a monotone principal curve for reliable analysis. For

instance, demand and supply curves in economics illustrate inverse and direct relationships

between price and quantity. Arfaoui and Ben Rejeb (2017) analyzed the interdependen-

cies between oil, gold, US dollars, and the stock market through a simultaneous equation

model, which justifies that each variable relates positively or negatively to other variables.

As addressed in Patton and Timmermann (2010), a plethora of theories in financial model-

ing require monotonic situations such as discovering the relation between expected returns

and market betas in the capital asset pricing model. In ethics-considered machine learning,

such as for privacy or fairness, ethical improvement of a learned model tends to trade off its

utility such as degree of accuracy in general (Xie et al., 2018; Sohn et al., 2024). These real-

world problems highlight the potential utility of monotone principal curves as fundamental

data analysis tools when monotonic phenomena between variables are expected.

Our ontributions are mainly threefold. First, we propose a novel principal curve frame-

work for fitting a monotonic curve in Section 2. To begin with, we characterize the mono-

tone curve in arbitrary finite-dimensional space using convex analysis and monotone op-

erator theory, and then we propose an optimization problem to find the monotone curve.

Secondly, Section 3 places rigorous theoretical analysis on the curve estimate, the solution

of the established optimization. After verifying the existence of the solution, we disclose the

convergence rate of the expected empirical and generalization errors. The generalization

error in this work implies the estimation error for unseen data. Note that tackling such
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a generalization error is particularly important from machine learning and statistics view-

points, since it can provide a theoretical foundation for model selection to avoid overfitting

or find optimal hyperparameters. To our knowledge, this is the first work in the principal

curve literature to derive the generalization error based on convex analysis. Finally, in Sec-

tion 4, we introduce a numerical algorithm that finds the monotone curve through neural

networks. In Section 5, simulation studies verify that our method achieves more accurate

estimation than general curve-fitting methods when the underlying curve is monotone. Sec-

tion 6 applies the proposed framework to model future prices for copper, gold, and silver,

and to estimate a demand curve between avocado prices and sales volume. These real data

applications advertise that our method enjoys more robust estimation in terms of variable

transformation than the competing methods when monotone relationships are anticipated.

1.1 Literature review

To seek a better representation of a principal curve, versatile approaches have been steadily

attempted and categorized mainly by two branches from our perspective. First, a principal

curve is seen as a minimizer of a distance between the curve and data points with regulariza-

tion. Secondly, a principal curve is approached by a ridge where gradients and eigenvectors

of a density’s Hessian are orthogonal. The seminal work of Hastie and Stuetzle (1989) de-

fined a curve on self-consistency as a local average of data points having the minimal mean

squared distance to the data points indexed by the domain of the curve itself. This initial

approach, however, guarantees the existence of a curve only on a specific data distribution

and tends to estimate a biased curve around high-curvature areas. These limitations ig-

nited subsequent studies. To alleviate the bias, Tibshirani (1992) approached a principal

curve as weighted local averages of data points by formulating the curve-generating pro-
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cess as a probabilistic mixture modeling. Banfield and Raftery (1992) eased the bias by

updating a curve estimate based on the smoothed residuals of the curve. To ensure the

existence of a curve in a more general distribution, Kégl et al. (2000) considered a curve

whose length is bounded by a fixed size on a bounded and convex domain. Gerber and

Whitaker (2013) proposed a surrogate objective to replace the mean squared distance so

that a principal curve lies in critical points that are locally minimal. In behind, Duchamp

and Stuetzle (1996) showed the self-consistent curve can be critical but not extremal points

for the mean squared distance, which contributed to justifying such challenges of estimating

self-consistent curves. Recent efforts in this branch have focused on finding self-consistent

curves in non-Euclidean spaces (Hauberg, 2015; Lee et al., 2020; Kang and Oh, 2024).

On the one hand, Ozertem and Erdogmus (2011) viewed a principal curve, for a given

probability density function, to lie in an 1-dimensional intrinsic space in which the density’s

gradient and eigenvectors of the Hessian are constrained to be orthogonal. The set of points

in the constrained space is called a ridge or filament that captures the essential structures

of the data. In general, ridges refer to multidimensional constrained spaces where the

projected gradient of the density vanishes in certain directions defined by the Hessian

eigenvectors, and the curvature satisfies specific eigenvalue constraints. Note the filament

stands for the 1-dimensional ridge. Genovese et al. (2014) mathematically justified that

this subspace-constrained approach that finds a ridge can approximate the true lower-

dimensional manifold with an additive noise term. Chen et al. (2015) suggested selecting a

reasonable kernel’s bandwidth used to approximate the probability density by maximizing

the extent of covering a population ridge. On the other hand, Qiao and Polonik (2016)

viewed the 1-dimensional ridge as an integral curve from the differential equation involving

the Hessian’s eigenvector corresponding to the second eigenvalue in the two-dimensional
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space. Besides, further efforts have been made to improve the algorithm and theory of the

subspace-constrained methodology (Qiao and Polonik, 2021; Zhang and Chen, 2023).

2 Formulation of monotone curve-fitting task

The construction of our monotone curve-fitting task starts with characterizing a monotone

curve in a finite-dimensional space through convex analysis. Then a novel learning problem

is introduced where the solution corresponds to the suggested monotone curve.

2.1 Monotone set and diagonal parametrization

Let [n] ∶= {1,2, ..., n} for n ∈ N = {1,2, ...}. Let P(Ω) denote the set of probability measures

(distributions) over a measure space Ω, and ⟨a,b⟩ denote the inner product of vectors a,b.

We say that a set Γ ⊂ Rk is monotone if for any a = (ai)i,b = (bi)i ∈ Rk, either ai ≥ bi or

ai ≤ bi for all i ∈ [k]. Note that this is equivalent to (bj − aj)(bi − ai) ≥ 0 for all i, j ∈ [k]. A

monotone set Γ is maximally monotone if it is not a proper subset of other monotone sets.

Now we characterize a monotone curve via the diagonal coordinate s(x) ∶= ∑
k
i=1 xi,∀x =

(x1, ..., xk) ∈ Rk. Let S(Γ) ∶= {s(x) ∣x ∈ Γ} and sΓ ∶ Γ→ S(Γ), the restriction of s on Γ.

Definition 2.1 For a monotone set Γ ⊆ Rk, we call γ = (γ1, ..., γk) ∶= s−1Γ ∶ S(Γ) → Γ the

associated monotone curve, which parametrizes Γ via the diagonal coordinate s.

Note that sΓ is bijective and each component γi is a nondecreasing function of s if Γ is

monotone, and the maximal monotonicity of Γ is equivalent to the condition S(Γ) = R. Our

definition of a monotone curve is based on an underlying monotone set. In the following,

we outline the characterization of a monotone set using convex functions that satisfy a

duality relationship, and show that the associated curve γ can be represented by them.
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2.2 Exposure of a monotone set through convex functions

We first introduce basic mathematical tools for convex analysis. Let A(H) denote the set

of proper, lower-semicontinuous and convex functions (valued in R ∪ {+∞}) on a Hilbert

space H. In this general setting, a set Γ ⊂ H ×H is called monotone if ⟨b2 − a2, b1 − a1⟩ ≥ 0

for any a = (a1, a2),b = (b1, b2) ∈ Γ. For a function f ∶ H → R ∪ {+∞}, its convex conjugate

is f∗(y) ∶= supx∈H [⟨x,y⟩−f(x)]. Then the Fenchel-Young inequality f(x)+f∗(y) ≥ ⟨x,y⟩

holds for all x,y ∈ H. We say that f and g are mutually conjugate if f = g∗ and g = f∗.

The Fenchel–Moreau theorem states that f∗∗ ∶= (f∗)∗ = f for any f ∈ A(H), which implies

f and f∗ are mutually conjugate. For f ∈ A(H) and x ∈ H, the subdifferential of f at x is

defined as the following convex set ∂f(x) = {v ∈ H ∣ f(y) − f(x) ≥ ⟨v,y − x⟩∀y ∈ H}, and

the set ∂f = ⋃
x∈H
{(x,y) ∈ H ×H ∣ y ∈ ∂f(x)} is then called the subdifferential of f .

The following proposition by Rockafellar and Minty (see Bauschke and Combettes

(2019)) states that a monotone set is contained in a set where the Fenchel-Young inequality

achieves equality. Let S(Γ) = {x + y ∣ (x,y) ∈ Γ} and Γ−1 ∶= {(y,x) ∣ (x,y) ∈ Γ} for Γ ⊂ H2.

Proposition 2.1 Let f, g ∈ A(H) satisfy f(x) + g(y) ≥ ⟨x,y⟩ for all x,y ∈ H. Then the

contact set Γf,g ∶= {(x,y) ∈ H2 ∣ f(x) + g(y) = ⟨x,y⟩} is monotone. Moreover, f, g are

mutually conjugate if and only if Γf,g is maximally monotone if and only if S(Γf,g) = H, in

which case Γf,f∗ = ∂f = (∂f∗)−1. Furthermore, any monotone set Γ ⊂ H2 is contained in a

maximally monotone set Γf,f∗ for some f ∈ A(H).

The equality ∂f = (∂f∗)−1 states that for f ∈ A(H), ∂f and ∂f∗ are the (generalized)

inverses of each other.

Understanding how to obtain such f and f∗ that expose a given monotone set Γ as

Γ ⊂ Γf,f∗ is particularly simple and instructive when H = R. To simplify discussion, we

suppose that Γ ⊂ R2 is monotone and Γ is maximally monotone without loss of generality.
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Remark 2.1 (Construction of f, f∗ given Γ) Given a maximally monotone Γ ⊂ R2, we

define convex functions f, g such that Hf,g(x, y) ∶= f(x) + g(y) − xy ≥ 0 for all x, y ∈ R, and

moreover, Γ = {(x, y) ∈ R2 ∣Hf,g(x, y) = 0}. As a result, f, g are mutually conjugate due to

the maximality of Γ. For simplicity, we assume Γ is strictly monotone, i.e., (x′−x)(y′−y) >

0 for any (x, y), (x′, y′) ∈ Γ. We also assume that {x ∣ (x, y) ∈ Γ} = {y ∣ (x, y) ∈ Γ} = R.

Then Γ is the graph of a continuous, strictly increasing function (still denoted as Γ), i.e.,

Γ = {(x, y) ∣ y = Γ(x), x ∈ R}. Also, Γ has a unique intersection point with y-axis; denote

it as (0, y0). Now define f(x) ∶= ∫
x

0 Γ(u)du and g(y) ∶= ∫
y

y0
Γ−1(u)du. Then f, g are convex

as Γ is increasing, and ∂g = (∂f)−1 implies that f, g are mutually conjugate, i.e., g = f∗.

2.3 Loss function to extract a monotone set

Such procedures for characterizing a monotone set through mutually conjugate convex

functions lay the groundwork for designing a novel statistical learning framework to identify

a monotone principal curve. It is helpful to first discuss this problem in the two-dimensional

space R2. Let µ ∈ P(R2) denote the data distribution of X = (X1,X2), which exhibits an

approximately monotone structure. To formulate a learning framework, this work proposes

the following “loss function” to identify a monotone set:

H(x; f1, f2) = f1(x1) + f2(x2) − x1x2, x = (x1, x2) ∈ R2,

where f1 and f2 are in duality defined as below.

Definition 2.2 We say that a pair of convex functions f1, f2 ∈ A(R) is in duality position,

or simply in duality, if H(x; f1, f2) ≥ 0, i.e., f1(x1) + f2(x2) ≥ x1x2 for all x1, x2 ∈ R.

This loss function will be generally larger as x is farther from the monotone set Γf1,f2

on which H attains its minimum 0. Figure 1 draws a contour of H(x; f, f∗) for a power
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Figure 1: Contour of H(x; f, f∗): f(x) = ∣x∣p/p and f∗(x) = ∣x∣q/q, the convex conjugate of

f , with 1/p + 1/q = 1. The star points (★) represent the zero set where H(x; f, f∗) = 0.

function on the grid of x1, x2. This inspires us to use EX∼µ[H(X; f1, f2)] as an objective

and minimize it over the convex pair f1, f2 in duality, since Proposition 2.1 shows that the

zero set Γf1,f2 will then represent a monotone curve in R2.

We now explain how the diagnoal parametrization (monotone curve) γ = s−1Γ ∶ S(Γ) → Γ

can be represented by a convex pair (f1, f2). If (f1, f2) is in duality and x = (x1, x2), the

first order condition yields the following implication

H(x; f1, f2) = 0 Ô⇒ x2 ∈ ∂f1(x1) and x1 ∈ ∂f2(x2). (1)

With q(x) ∶= ∣x∣2/2 and gi ∶= fi + q, i = 1,2, the following equivalences x2 ∈ ∂f1(x1) ⇐⇒

x1 + x2 ∈ ∂g1(x1) and x1 ∈ ∂f2(x2) ⇐⇒ x1 + x2 ∈ ∂g2(x2) are straightforward. Hence, the

implication (1) can be restated as x ∈ Γf1,f2 Ô⇒ xi = (∂gi)−1(s(x)), i = 1,2. In fact, the

reverse implication also holds; see (Bartz et al., 2021, Theorem 4.1) and its proof.

This shows that the diagonal parametrization γ = (γ1, γ2) of the monotone set Γf1,f2 can

be expressed as γi = (∂gi)−1. Moreover, (∂gi)−1 = ∇g∗i , where (whether gi ∈ A(R) is differen-

tiable or not) g∗i = f
∗
i ◻q ∶= infy∈R[f

∗
i (y)+q(x−y)], called the Moreau envelope of f∗i , is a dif-

ferentiable convex function on R with 1-Lipschitz nondecreasing derivative ∇g∗i (Bauschke

and Combettes (2019)). Hence the monotone curve γ(s) ∶= ((∂g1)−1(s), (∂g2)−1(s)) is de-
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fined for all s ∈ R, with ((∂g1)−1(s), (∂g2)−1(s)) ∈ Γf1,f2 if s ∈ S(Γf1,f2). In particular, if

f1 = f = f∗2 , then since S(Γf,f∗) = R, γ yields a bijection between R and Γf,f∗ .

2.4 Exposure of a monotone curve in higher dimensions

This section extends the aforementioned discussion to any data dimension k. For fi ∈ A(R),

i ∈ [k], we write f = (f1, ..., fk) and f⊕(x) ∶= ∑
k
i=1 fi(xi) for x = (x1, ..., xk) ∈ Rk. Define a

cost function c(x) ∶= ∑1≤i<j≤k xixj and H(x; f) ∶= f⊕(x) − c(x) = ∑
k
i=1 fi(xi) − ∑1≤i<j≤k xixj.

Let us say that f is in duality position, or simply in duality, if the nonnegativity H(x; f) ≥ 0

holds for all x ∈ Rk. Also we say that f = (f1, . . . , fk) is a c-conjugate tuple if for each i ∈ [k]

and xi ∈ R, fi(xi) = (⊕j≠i fj)c(xi) ∶= supj≠i, xj∈R [c(x1, . . . , xi, . . . , xk) − ∑j≠i fj(xj)]. Any c-

conjugate tuple is in duality position. Also, (⊕j≠i fj)c is convex and lower-semicontinuous

for any proper (not necessarily convex) functions (fj)j, thus (⊕j≠i fj)c ∈ A(R) if proper.

Remark 2.2 Let q(x) = x2/2, gi = fi + q. We then have H(x; f) = H̃(x;g) with H̃(x;g) ∶=

g⊕(x)−c̃(x) and c̃(x) ∶= s(x)2/2. As a result, f is c-conjugate if and only if g is c̃-conjugate.

The following is an extension of Proposition 2.1 for the c-conjugate functions on R.

Proposition 2.2 Assume that f = (fi)ki=1 ∈ A(R)k is in duality position. Then the zero set

Γf ∶= {x ∈ Rk ∣H(x; f) = 0} is monotone. Moreover, f is a c-conjugate tuple if and only if Γf

is maximally monotone if and only if S(Γf) = R. Furthermore, any monotone set Γ ⊂ Rk

is contained in a maximally monotone set Γf for some c-conugate tuple f ∈ A(R)k.

The monotonicity of Γf is shown in Lemma A.1 in Supplementary A. The proposition

shows that any monotone curve in Rk can be exposed as a subset of the monotone set Γf

induced by convex functions f in duality, and Γf is maximally monotone if and only if f is

c-conjugate. This motivates us to use H(x; f) as the objective function. We also extend

Remark 2.1 for Rk in the following.
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Remark 2.3 For simplicity (and without loss of generality), assume Γ ⊂ Rk is maximally

monotone. Let Γij ⊂ R2 represent the orthogonal projection of Γ onto the xixj-plane. We

further assume that Γij is strictly monotone, and that the projections of Γij to the xi- and

xj-axes are both R, for all i < j. As before, we identify Γij with a function still denoted

as Γij; (xi, xj) ∈ Γij ⇔ xj = Γij(xi). Let Γji ∶= Γ−1ij , and let (0, yij) denote the intersection

point of Γij with xj-axis, i < j. Define

fi(xi) ∶=
i−1
∑
j=1
∫

xi

yji
Γij(u)du +

k

∑
j=i+1
∫

xi

0
Γij(u)du. (2)

Then, as explained in Remark 2.1, the following inequality holds:

k

∑
i=1

fi(xi) = ∑
i<j
[∫

xi

0
Γij(u)du + ∫

xj

yij
Γji(u)du] ≥ ∑

i<j
xixj for all x = (x1, ..., xk) ∈ Rk,

and moreover, equality holds if and only if (xi, xj) ∈ Γij for all i < j, that is, x ∈ Γ. From

this, it follows that the maximal monotonicity of Γ is equivalent to the c-conjugacy of f .

Note that, defining Γii ∶= Id the identity function on R, gi = fi + q can be expressed as

gi(xi) = ∑
i−1
j=1 ∫

xi

yji
Γij(u)du +∑

k
j=i ∫

xi

0 Γij(u)du.

To characterize a monotone curve γ in Rk, we turn to the parametrization of monotone

sets in Rk using the diagonal coordinate. Given fi ∈ A(R), i ∈ [k], with H( ⋅ ; f) ≥ 0 and

x = (x1, ..., xk) ∈ Rk, the equivalence H(x; f) = 0 ⇐⇒ s(x) ∈ ∂gi(xi) ∀i ∈ [k] holds true by

an application of Theorem 4.1 of Bartz et al. (2021). This yields a parametrization of the

monotone set Γf via the diagonal coordinate, i.e., x ∈ Γf ⇐⇒ xi = (∂gi)−1(s(x)), ∀i ∈ [k],

where (∂gi)−1 = ∇g∗i = ∇(f
∗
i ◻q) is a 1-Lipschitz nondecreasing function on R. We can thus

write γ(s) = γf(s) ∶= ((∂gi)−1(s))i∈[k]. If f is c-conjugate, then γ ∶ R→ Γf is a bijection.
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2.5 Monotone curve-fitting task

The diagonal parametrization motivates another natural form for the objective function

∥x−γf(s(x))∥2. Intuitively, γf minimizing the squared error can be seen as a 1-dimensional

latent manifold that condenses the original information of the data points. This extra

term, therefore, helps γf represent the essential geometric shape of the data points. In

manifold learning, this term is commonly referred to as a reconstruction error, representing

the extent to which a model can accurately reproduce the original data. Consequently,

we propose the following optimization problem for the monotone curve-fitting task (for a

chosen parameter λ ≥ 0 and a domain D ⊂ A(R)):

minimize EX∼µ[H(X; f) + λ∥X − γf(s(X))∥
2] over f = (f1, ..., fk) ∈ D

k in duality. (3)

As before, if we restrict f to be c-conjugated, then the problem is expressed as

minimize EX∼µ[H(X; f) + λ∥X − γf(s(X))∥
2] over c-conjugate tuples f ∈ Dk. (4)

As a result, the solution curve γf becomes restricted to be monotone in Γf while having a

minimal distance to the data.

This penalty-based optimization categorizes our monotone curve-fitting task to the first

branch in the curve literature discussed in Section 1.1. More specifically, the self-consistency

curve γSC of Hastie and Stuetzle (1989) can also be seen to minimize the reconstruction

error E[∥X−γSC(s)∥2] in the sense that their approach is to find the projection index that

has smaller reconstruction error sγSC(X) ∶= sup{s ∶ ∥X−γSC(s)∥ = infs′ ∥X−γSC(s
′)∥} where

γSC(s) = E[X ∣ sγSC(X) = s ]. In our case, we specify the diagonal coordinate, which is

not a variable of optimization, but still maintains the data-driven nature by summing all

variables. Similarly, other methodologies in this branch formulate constrained optimization

to define and find principal curves (Tibshirani, 1992; Kégl et al., 2000; Hauberg, 2015).
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In conclusion, we propose the following monotone curve-fitting task.

Task 1 Given data µ̂ ∈ P(Rk), solve (3) or (4) to find a minimizer of convex functions

f̂ = (f̂1, . . . , f̂k). The parametrized monotone curve γ̂(s) ∶= ((∂ĝi)−1(s))i∈[k] is offered as a

solution for the monotone curve-fitting task, where ĝi = f̂i + q.

2.5.1 Extension of Task 1 via orthogonal transformation

What can we do if, for instance, the observed data in R2 does not exhibit rough monotonic-

ity but instead aligns with an anti-monotone structure, such as along the anti-diagonal? In

cases where the data appears to be roughly aligned along an axis that is not parallel to the

diagonal, one could consider applying Task 1 after performing an appropriate rotation of the

data. We denote by O(k) = {U ∈ Rk×k ∣UTU = UUT = I} the set of all orthogonal matrices,

where UT is the transpose of U and I is the identity matrix. Then for f = (f1, . . . , fk) ∈ Dk

with a chosen domain D ⊂ A(R), the problems (3) and (4) can be generalized as

minimize EX∼µ[H(UX; f) + λ∥UX − γf(s(UX))∥2] over U ∈ O(k) and f in duality, (5)

minimize EX∼µ[H(UX; f) + λ∥UX − γf(s(UX))∥2] over U ∈ O(k) and c-conjugate f , (6)

respectively. Consequently, we propose the following modified task.

Task 2 Given data µ̂ ∈ P(Rk), solve (5) or (6) to find a minimizer of an orthogonal

transformation Û and convex functions f̂ = (f̂1, . . . , f̂k). The parametrized monotone curve

s↦ ÛTγ̂(s), where γ̂(s) = ((∂ĝi)−1(s))i∈[k] and ĝi = f̂i + q, is offered as a solution.

To motivate this task, we illustrate Task 2 on a toy example in Figure 2. A toy data

set follows a bivariate normal variable X(s) = (X1(s),X2(s))T where E[X1(s)] = −s2,

E[X2(s)] = log(s + 1), Var(X1(s)) = Var(X2(s)) = 0.1, and Cov(X1(s),X2(s)) = 0.09 for

s ∼ Unif[0,3]. Note that the ground truth curve of X is expressed by (−s2, log(s + 1))T.
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The original data points are positioned antidiagonally (left-top figure), which causes the

transformation U to align the transformed data points diagonally. On top of that, the

contour of H exposes the monotone set. Once the task finds the monotone curve, the

estimated curve in the space of UX is rotated back to estimate the curve in the space of X.

Depending on a goal of an application, this final step may not be necessary if one wants

to find a monotone curve on the space of UX or find U to make variables monotonically

related. A numeric algorithm to implement Task 2 appears in Section 4 later, where we

use the first principal components of X to determine the initial value of U and optimize it

with other variables for sufficient flexibility.

3 Theoretical analysis

In this section, we first show the existence of our curve estimate found from the statistical

learning problem and then investigate statistical error bounds for the estimate. The proof

and the explicit forms of technical constants appear in Supplementary A. To highlight the

theoretical contributions of our work, we first review key literature in the field. We use the

asymptotic notation an = O(bn) (and an = Op(bn)) to imply that an/bn is bounded above

by a constant (and with high probability), as n gets larger for the sequences an, bn.

In the first branch of principal curve literature (see Section 1.1), the work of Kégl et al.

(2000), assuming the curve has a fixed length on a bounded domain, showed that the rate

of convergence is at O(n−1/3), but the convergence is in terms of a loss function between

data and a curve. That is, the loss function evaluating their empirical minimizer converges

to the one of a true curve. More rigorous analysis of the statistical error rate stemmed

from the second branch that defines the ridge of the target density as the principal curve.

Genovese et al. (2014) provided statistical foundations for Ozertem and Erdogmus (2011).
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Figure 2: Task 2 for the toy example: (p1, p2) is the first principal component, (1,1)

indicates the diagonal direction, and γX is the true curve associated to X.

They found a ridge estimator from kernel density estimation converges to the population

ridge at Op((logn/n)2/(d+8)) in the Hausdorff distance, where d is the dimension of data.

Moreover, they showed that if data is concentrated on a manifold with Gaussian noise

having standard deviation σ in the ambient space, and the ridge estimator aims to extract

the manifold, then the rate has an additive error term O(σ2 log(1/σ)), relying on the size

of the noise, that does not decay by the sample size.
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3.1 Existence

To begin with, we show the existence of a solution to the problems (3) and (4) for any

distribution of X ∼ µ where it has the finite second moment.

Theorem 3.1 Let D = Cm in (3) and (4) where m = (m0,m1,m2,m3) with mi ≥ 0, and

Cm ∶= {f ∈ C
2(R) ∶ ∣f(0)∣ ≤m0, ∣f

′(0)∣ ≤m1, 0 ≤ f
′′(x) ≤m2, (7)

∣f ′′(x) − f ′′(x′)∣ ≤m3∣x − x
′∣ for all x,x′ ∈ R}.

If EX∼µ∥X∥2 < ∞ and m2 ≥ k − 1, then solutions to (3) and (4) exist, respectively.

We remark that existing studies of a principal curve particularly for the first branch showed

the existence of their principal curves under relatively stronger conditions. The principal

curve with self-consistency condition in Hastie and Stuetzle (1989) guarantees the existence

for some specific distributions such as spherically symmetric and ellipsoidal distributions.

In Kégl et al. (2000), they showed the existence of a principal curve with a finite second

moment, but they further require the curve to have a fixed length on a bounded domain.

In contrast, our curve estimation enjoys the existence in more general distributions.

3.2 Statistical error analysis

In this section, we present our primary theoretical results on the statistical error bound

of our estimate. We first outline the population model that generates the data. Consider

a dimension k ≥ 2, a maximally monotone curve Γ ⊂ Rk, and a probability distribution

ρ ∈ P(Rk) such that ρ(Γ) = 1. Let ε ∈ P(Rk) denote the noise distribution with zero mean.

Define U and R as independent random variables in Rk, where U ∼ ρ and R ∼ ε, thus

U ∈ Γ and E[R] = 0. The population model is then described by X = U +R with X ∼ µ,
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representing the population distribution. Let γ(s) = ((∂gi)−1(s))i∈[k] parametrize Γ, where

f = (f1, . . . , fk) is c-conjugate and exposes Γ, defined as in (2).

Denote X = (X1, . . . ,Xk) and define X̂ ∶= (Xm)
n
m=1 = (X1,m, . . . ,Xk,m), m = 1, . . . , n, as

independent and identically distributed (i.i.d.) observations sampled from µ. The empirical

data distribution is denoted by µ̂ = ∑
n
m=1 δXm/n, where δx denotes the Dirac mass at x. Let

f̂ ∈ Dk be a c-conjugate solution to (4) with µ replaced by µ̂, and let γ̂(s) = ((∂ĝi)−1(s))i∈[k]

denote the corresponding parametrized monotone curve. Note that although µ̂ and γ̂

depend on the number of samples n, we omit it from the notations for simplicity.

We first establish an upper bound for the expected empirical MSE, defined as Eemp
n =

E [n−1∑n
m=1 ∥γ(s(Xm)) − γ̂(s(Xm))∥

2], as stated in the following theorem. This result in-

dicates that our curve estimate becomes more accurate as the noise in the data decreases.

Theorem 3.2 Let m = (m0,m1,m2,m3) ∈ R4
≥0 and Cm be the class of admissible functions

as in (7). Suppose Γ ⊂ Rk is maximally and strictly monotone, and its associated f =

(fi)i∈[k], defined in (2), belongs to (Cm)k. Assume E∥X∥2 < ∞. Given empirical data µ̂, let

f̂ minimize (4) with D = Cm. Then for any data dimension k ≥ 2 and the number of samples

n ∈ N, we have Eemp
n ≤ CE[∥R∥2] where C > 0 depends only on m2, λ, and k. Moreover, if

the components of the noise are mutually uncorrelated, i.e., E[RiRj] = 0 for every i ≠ j,

then C depends only on m2 and λ, and not on k.

We note that this dependence of the empirical error bound on noise size aligns with the

argument in Hastie and Stuetzle (1989), which discusses how noise size amplifies the bias

of the self-consistent curve, particularly when the curve is an arc of a circle.

We then establish an upper bound for the generalized MSE, the estimation error for un-

seen dataY
d
=X, whereY is independent ofX, defined as Egen

n = E [∥γ(s(Y)) − γ̂(s(Y))∥2].
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Theorem 3.3 Suppose the assumptions of Theorem 3.2 hold. If µ is compactly supported,

then ∣Egen
n −E

emp
n ∣ ≤ C ′kn−1/3 where C ′ > 0 depends only on m1, κ but not on k,n, where κ is

the smallest number such that s(X) ∈ [−κ,κ] a.s.. The generalized MSE therefore satisfies

Egen
n ≤ CE[∥R∥2] +C ′kn−1/3.

Interestingly, our analysis based on the mean squared error conceptually shares similarities

with the results of Genovese et al. (2014), particularly for the manifold case. As their

rate of convergence, the upper bound of our generalization error is also decomposed by

a sample complexity and an additive term proportional to the size of underlying random

noises scaled by a technical constant. In our case, the convergence rate is at O(n−1/3) in the

mean squared error. Also, we remark that our analysis directly tackles the error analysis

between true and estimated curves in contrast to Kégl et al. (2000), which advances the

curve-level statistical analysis in the first branch of a principal curve literature.

4 Numerical algorithm

In previous sections, we justify the loss function EX∼µ[H(UX; f) + λ∥UX − γf(s(UX))∥2]

and its empirical version where f is in duality to eventually estimate the population mono-

tone curve γ. This section introduces a numerical procedure to obtain the solution of Tasks

1 and 2 to find γ̂(s) ∶= ((∂ĝi)−1(s))i∈[k] where ĝi = f̂i+q and the diagonal coordinate s. One

challenge stems from handling the inf-convolution (∂ĝi)−1 = ∇(f̂∗i ◻q), since computing the

convex conjugate of f̂i and performing the required operation together is generally non-

trivial. To address this, we incorporate an auxiliary optimization procedure that directly

computes the inverse of ∇(f̂i+q). This inverse of gradient is denoted by Ĝ9
i (s) ∶= (∂ĝi)

−1(s),

representing the target estimate as γ̂(s) = (Ĝ9
i (s))i∈[k]. Finally, an additional penalty is

placed to enforce the inverse relationship between Ĝ9
i (s) and ∂ĝi, so the proposed algorithm
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bypasses to handle the inf-convolution.

To approximate the target functions f̂i and Ĝ9
i , we employ neural networks. Neural

networks are composite functions constructed from multiple layers of affine transformations

and activation functions. Their use in this context offers several advantages. First, neural

networks possess a universal approximation property, enabling them to approximate any

continuous function arbitrarily well (DeVore et al., 2021). This aligns with the requirements

of our framework, where fi and γ are continuous functions. Also, enforcing the convexity

of fi is straightforward using structural modifications of neural networks.

Denote G9(s) ∶= (G9
1(s), . . . ,G

9
k(s)) and Ĝi ∶= ∇ĝi = ∇f̂i + Id. With the consideration of

the invertibility constraint for G9
i , a proposed optimization to implement Task 2 is to solve

min
f ,G9, U

Eµ̂[H(UX; f)] + λEµ̂[∥UX −G9(s)∥
2] + τ

k

∑
i=1

Eµ̂[ ∣Ĝi(G
9
i (s)) − s∣

2], (8)

where s = ∑
k
i=1(UX)i, U ∈ O(k), fi ∈ NNC, and G9

i ∈ NN F for all i = 1, . . . , k. Recall

that the optimization requires two constraints H(UX; f) ≥ 0 and UTU = UUT = I. In the

case of U = I, the optimization reduces to solving Task 1. The third term in (8) encodes

the monotone structure inherent in ∇ĝi, ensuring that the resulting curve, Ĝ9, remains

monotone. For NNC and NN F, we specify 4 hidden layers with 64 nodes and the last

layer with 1 output node. The ELU activation function is imposed except for the last layer.

The neural networks in NNC additionally have the structure of the input convex neural

network (Amos et al., 2017) that concatenates the input to all hidden layers and imposes

non-negativity constraints on the weight matrices.

Algorithm 1 shows the overall optimization procedures in detail. The superscript (t)

denotes the tth iterate of it, Xi denotes the ith random sample, and Xj,i denotes the

jth component of Xi. To handle the nonnegativity constraint for H(U (t)Xi; f (t)), this

work adopts the Lagrangian dual formulation used in Fioretto et al. (2021) that is able to
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adapt neural networks. This Lagrangian formulation places an inner maximization problem

λL(0−H(U (t)X; f (t))) for the variable λL. During the iterative computation, λL gradually

increases according to the violation of the constraint max{−H(U (t)Xi; f (t)),0}. We also

acknowledge putting a sufficiently large constant λL for the constraint. In the algorithm, if

H(U (t)Xi; f (t)) ≥ 0 for all i, L+ is the unbiased estimator of E[H(U (t)X; f (t))]. For stable

updates of the orthogonal transformation matrix, we set U (0) as the inverse of the first PCA

component (p1, . . . , pk)T of X, so that the first principal component of the transformed data

points (U (0)Xi)i in the first iteration align with the diagonal, as illustrated in Figure 2. The

orthogonality constraint for U (t), i.e, UTU = UUT = I, also adopts the Lagrangian duality

with the variable λO. Similar to λL, λO increases such that the resulting transformation

approximately satisfies the orthogonality. Algorithm 1 reduces to the implementation of

Task 1 by fixing U (t) = I and ignoring the update for orthogonal transformation.

Algorithm 1 adopts the early stopping rule. The n size of random samples is ran-

domly split by training µ̂train = {Xit ∶ it = 1, . . . , ntrain} and validation data µ̂val = {Xiv ∶

iv = 1, . . . , nval} with ntrain + nval = n. Then, in every iteration, models are updated

based on µ̂train, but the algorithm terminates the training process if the validation er-

ror Eµ̂val
[H(U (t)X; f (t))] + λEµ̂val

[∥U (t)X −G
(t)
9 (s)∥2] no longer decreases. We remark that

this training scheme aligns with the theory developed in Section 3, since Theorem 3.3

characterizes that the error gap between training and validation data should be negligible

when n is sufficiently large. In this work, the rule does not consider the inverse penalty to

align with our theoretical argument. Note that numerous machine learning tasks frequently

adopt this rule, as it helps to prevent a model from being overfitted to training data, so

models trained on finite samples better represent the underlying population.
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Algorithm 1 Monotone Curve Estimation with Early Stopping

1: Input: Initialized neural networks f
(0)
1 , . . . , f

(0)
k

,G
9,(0)
1 , . . . ,G

9,(0)
k

; Initialize U(0) = diag(1/p1, . . . ,1/pk); Set λ,λS ≥ 0

and λ
(0)
L = λ(0)O = 0; the learning rate r for each component; t = 0; valprev = valcurrent = ∞ (or a sufficiently large number)

2: Output: Ĝ∗9 = (G
9,(T )
1 , . . . ,G

9,(T )
k

)T, U∗ = U(T ), and f∗ = (f(T )1 , . . . , f
(T )
k
)T

3: while valprev ≥ valcurrent do

4: valprev ← valcurrent

5: Set sit = ∑k
j=1(U(t)Xit)j for all it

6: L+ ← n−1train∑
ntrain
it=1

max{H(U(t)Xit ; f
(t)),0}

7: L− ← n−1train∑
ntrain
it=1

max{−H(U(t)Xit ; f
(t)),0}

8: R ← n−1train∑
ntrain
it=1

∥U(t)Xit −G
(t)
9 (sit)∥2

9: M ← n−1train∑
ntrain
it=1

∑k
j=1 ∣Ĝ

(t)
j (G

9,(t)
j (sit)) − sit ∣2

10: for j = 1 to k do

11: f
(t+1)
j ← f

(t)
j − r ∂

∂fj
(L+ + τM + λ(t)L L−)

12: G
9,(t+1)
j ← G

9,(t)
j − r ∂

∂G9
j
(λR + τM)

13: end for

14: λ
(t+1)
L ← λ

(t)
L + rL−

15: % Update for Orthogonal Transformation %

16: PO ←max{∑i,j((U(t),TU(t) − I)2 + (U(t)U(t),T − I)2)i,j ,0}

17: U(t+1) ← U(t) − r ∂
∂U
(L+ + λR + τM + λ(t)O PO)

18: λ
(t+1)
O ← λ

(t)
O + rPO

19: % Compute the validation metric %

20: Set siv = ∑k
j=1(U(t)Xiv )j for all iv

21: valcurrent ← n−1val∑
nval
iv=1

max{H(U(t)Xiv ; f
(t)),0} + λn−1val∑

nval
iv=1

∥U(t)Xiv −G
(t)
9 (siv )∥2

22: t← t + 1

23: end while

24: Set T ← t

5 Simulation

We conduct a comparison study on experimental data sets to verify the performance of our

monotone curve-fitting framework. Our study considers Hastie and Stuetzle (1989) and

Ozertem and Erdogmus (2011) abbreviated by ‘HS’ and ‘SCMS’ (Subspace Constrained

Mean Shift) respectively. These competing methods find general principal curves that are

not necessarily monotone, and each approach has different statistical foundations for curve
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estimation. HS finds a curve that minimizes the mean-squared error on the notion of self-

consistency, whereas SCMS finds the ridge of the probability density that is estimated by

kernel density estimation.

5.1 Experiment data

The jth experimental data in R2 is generated as follows,

(X
(j)
1 (s),X

(j)
2 (s))

T
∼ N((µ

(j)
1 (s), µ

(j)
2 (s))

T
, (σ

(j)
1 (s), σ

(j)
1,2(s), σ

(j)
2 (s))

T
), (9)

where s ∼ S(j) is assumed; (µ
(j)
1 (s), µ

(j)
2 (s))

T
is the jth vector of mean functions w.r.t.

s; σ
(j)
1 (s) and σ

(j)
2 (s) are the variance of each element while σ

(j)
1,2(s) is the covariance

between the elements. Note that the mean vector indicates the principal curve. Table 1

summarizes the parameters to generate experimental data sets. To collect data, we first

generate s ∼ S(j), and (X
(j)
1,i (s),X

(j)
2,i (s))

T
is generated based on the evaluated function

of µ and σ for i = 1, . . . ,5000. Then the data is standardized such that each variable has

zero mean and unit standard deviation before fitting the curves. This pre-processing step

improves the performance of HS.

Table 1: Configuration of each experimental data in R2

j S(j) µ
(j)
1 µ

(j)
2 σ

(j)
1 σ

(j)
2 σ

(j)
1,2

1 Unif(-3,3) exp(s/10) + s s3/3 + s 0.1 0.1 0.1 ×min{cos(sπ) exp(∣s∣),1}

2 Unif(-3,3) s s 0.1 0.1 0.1 × cos(sπ)

3 Unif(0,3) −s2 log(s + 1) 0.1 0.1 0.09

To also investigate the performance in R3, the above data-generating process (9) is fur-

ther extended to sample the multivariate normal (X
(j)
1 (s),X

(j)
2 (s),X

(j)
3 (s))

T
. This three-

dimensional random vector inherits the parameters used in Table 1 for (X
(j)
1 (s),X

(j)
2 (s))

T
,
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and the parameters for X
(j)
3 (s) and associated dependencies appear in Table 2 where σ

(j)
3

is the standard deviation for X
(j)
3 and σ

(j)
l,m is the covariance between X

(j)
l and X

(j)
m .

Table 2: Additional parameters for each experimental data in R3

j µ
(j)
3 σ

(j)
3 σ

(j)
2,3 σ

(j)
1,3

1 t 0.1 0.05 0.1 ×min{sin(tπ) exp(∣t∣),1}

2 t 0.1 0.09 0.1 × sin(tπ)

3 t 0.1 0.09 0.09

5.2 Comparison

To begin with, the implementation of each method is briefly explained. The curves of the

competing methods, HS and SCMS, are found through their open source libraries with

the default configuration of their algorithms, where SCMS uses the Silverman’s rule of

thumb for the bandwidth parameter. For ours, the original data µ̂ with 5000 instances is

randomly split by 4500 and 500 to distinguish training µ̂train and validation data µ̂val, then

Algorithm 1 is implemented. Since HS and SCMS find estimated curves using all data

instances µ̂, ours also returns the estimated curve by evaluating U∗,TĜ∗9(s) on the entire

data µ̂. Multiplying U∗,T produces the estimated curve in the original space. The choice

of λ and τ is discussed later. To see details of implementation, refer to Supplementary B.

Visual inspection and quantitative evaluation support the superiority of our approach

for finding the ground truth monotone curves. Figure 3 provides a visual comparison of

the methods in both R2 and R3. HS and ours produce smooth curves; however, SCMS

exhibits significant oscillations and erroneously traces data points as curves, particularly

around the tails of the distributions. While HS appears to follow the monotone curves

reasonably well in cases j = 1,2, but for j = 3, it abruptly bends upward near the top left
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Figure 3: Comparison of three methods on 2 and 3 dimensions: the ground truth curves

(black points), Ours (blue stars), SCMS (orange rhombuses), and HS (green rectangles).

region, significantly deviating from the true curve. Similar phenomena are also observed

in the case of R3 as well. To evaluate the performance, we calculate averages and standard

deviations of the Hausdorff and 2-Wasserstein distance between the estimated and the true

curves, abbreviated by Haus. and Wass. respectively, based on 10 independent replicates

for each method. All values are rounded up at the 3 decimal point and multiplied by

100 for clarity. Table 3 supports the visual inspections. Ours achieves better evaluation

scores compared to the competing methods in general. Note that the Hausdorff distance

is particularly useful for assessing the robustness of a method in noisy data. The incorrect

curve points of SCMS, which look isolated from the true curve, lead to substantially large

Hausdorff distances.
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Table 3: The number in the parenthesis stands for the standard deviation. Smaller values

for each type of score are marked boldly.

Ours HS SCMS

k j Haus.(↓) Wass.(↓) Haus.(↓) Wass.(↓) Haus.(↓) Wass.(↓)

R2

1 83.141 (10.270) 0.775 (0.137) 129.247 (17.985) 1.420 (0.157) 205.784 (19.676) 3.710 (0.305)

2 7.499 (1.686) 0.196 (0.039) 15.856 (5.475) 0.666 (0.129) 90.283 (14.467) 1.013 (0.133)

3 137.598 (27.392) 2.973 (0.397) 176.840 (25.085) 8.655 (1.419) 224.469 (22.693) 8.582 (0.918)

R3

1 74.966 (8.314) 0.689 (0.141) 115.325 (17.367) 1.708 (0.165) 215.840 (28.041) 5.181 (0.479)

2 30.062 (3.512) 0.150 (0.029) 47.032 (5.645) 0.461 (0.059) 91.037 (19.051) 0.537 (0.051)

3 147.316 (19.486) 4.588 (0.418) 197.863 (33.584) 6.449 (0.493) 248.761 (19.156) 7.721 (0.920)

5.2.1 Varying the size of noise

Table 4 summarizes the evaluation scores for the different magnitudes of random noise

whose variance and covariance components in (9) are multiplied by σf , particularly for the

case of j = 3. Note that the third experimental data involves more difficult curve estimation

than the others intrinsically. In Table 3, all methods show relatively higher errors for j = 3.

As shown in Table 4, the three models show improved performance as the noise scale gets

smaller. In particular, we observe that ours is still consistently stronger in the Hausdorff

distance but SCMS now becomes stronger in the 2-Wasserstein distance. Tables 3 and 4

highlight that our method tends to achieve more accurate estimation, especially in noisy

and complex data exhibiting a roughly monotone shape.

5.3 Model selection

This section discusses how to use the proposed framework in a principled way so that

real-world users readily apply our method to their problems.
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Table 4: For the case of j = 3, the variance and covariance components for j = 3 are scaled

by σf . The number in the parenthesis stands for the standard deviation, and the smaller

values are marked boldly.

Ours HS SCMS

σf Haus.(↓) Wass.(↓) Haus.(↓) Wass.(↓) Haus.(↓) Wass.(↓)

R2
0.1 38.675 (6.315) 0.919 (0.125) 60.701 (18.866) 0.298 (0.025) 75.654 (12.892) 0.273 (0.053)

0.01 15.091 (1.947) 0.380 (0.054) 17.164 (7.614) 0.176 (0.016) 18.963 (6.041) 0.016 (0.002)

R3
0.1 25.138 (4.638) 0.383 (0.096) 52.253 (13.588) 0.417 (0.043) 75.009 (7.109) 0.343 (0.035)

0.01 12.350 (2.011) 0.235 (0.023) 15.091 (5.152) 0.289 (0.057) 15.851 (4.286) 0.017 (0.002)

5.3.1 Choice of λ and τ

Define LH = Eµ̂val
[H(U∗X; f∗)] and LR = Eµ̂val

[∥U∗X − Ĝ∗9(s)∥
2]. Our proposed strategy

is to select λ and τ by minimizing LH + LR, the sum of the two main validation errors.

Alternatively, other criteria can be considered, such as the weighted sum w1LH+w2LR with

w1+w2 = 1 or the Pareto frontier of (LH , LR), depending on the specific domain knowledge

or requirements. While metrics like Hausdorff and Wasserstein distances explicitly measure

the estimation quality as the distance between the true and estimated curves, they are often

impractical in real-world scenarios since the true curve is typically unknown.

Table 5 summarizes the averages of the evaluation metrics for the 9 combinations of

τ and λ in the case of j = 3. The table first highlights that our method achieves better

Haus. scores compared to the competing methods in all the combinations of τ and λ.

Secondly, using λ and τ that achieves the minimum LH + LR seems to avoid a relatively

poor estimation. For example, as shown in the table, this tuning strategy avoids the choice

(λ, τ) = (1,10) which has a relatively higher LH + LR. This choice exhibits a significantly

worse Wass. score compared to other options in the table, as well as HS and SCMS in

Table 3. These findings motivate the adoption of the strategy proposed in this section,
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with the scores presented in Tables 3 and 4 being derived accordingly. We note that the

results of j = 1 and j = 2 show a similar pattern, and are presented in Supplementary B.

Table 5: Evaluation metrics for different choices of λ and τ when the data j = 3 in R2: In

each column of Wass. and Haus., and LH + LR, bold values indicate the minimum across

combinations of λ and τ . Values marked with an asterisk (∗) indicate the values of Wass.

and Haus. that correspond to the minimum LH +LR.

τ λ Wass. Haus. LH LR LH +LR

0.1

1 3.183 (0.420) 129.313 (22.703) 30.114 (1.546) 60.530 (1.617) 90.645 (2.842)

10 3.084 (0.600) 134.837 (22.196) 32.189 (1.764) 62.591 (1.225) 94.779 (2.230)

100 ∗2.973 (0.397) ∗137.598 (27.392) 30.138(2.361) 59.940(2.648) 90.078 (4.727)

1

1 3.960 (0.614) 100.764 (14.479) 30.870 (2.889) 62.139 (2.896) 93.009 (5.675)

10 3.280 (0.468) 127.209 (21.941) 30.880 (3.949) 60.554 (4.251) 91.434 (8.174)

100 3.310 (0.415) 137.856 (24.916) 30.214 (2.876) 61.174 (3.268) 91.388 (5.876)

10

1 8.476 (0.755) 100.988 (10.723) 35.569 (2.827) 68.700 (2.625) 104.269 (5.265)

10 4.765 (0.512) 98.660 (16.712) 31.306 (4.148) 61.704 (3.705) 93.010 (7.779)

100 3.275 (0.461) 132.662 (23.547) 32.754 (3.470) 61.122 (3.003) 93.876 (6.249)

5.3.2 Estimation with U

Another key consideration is whether to use the orthogonal transformation. Table 6 com-

pares evaluation scores when U is a variable versus when it is fixed as U = I. As shown in

the table, optimizing the transformation matrix significantly improves estimation accuracy,

particularly when the underlying curve is non-increasing. The optimized transformation

matrix repositions data points so that each variable exhibits an increasing relationship,

allowing the algorithm to identify the increasing curve more effectively in the transformed

space. However, if the original data already shows a clear increasing pattern, using the

orthogonal transformation is not essential. For instance, in Table 6, only minor improve-

ments are observed for j = 1 and j = 2 when optimizing U , and even with U = I, the results
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still outperform competing methods in Table 3 in terms of Haus. and Wass. distances.

Table 6: Comparison for using the orthogonal transformation in Algorithm 1

Variable U Fixed U = I

j Haus. (↓) Wass. (↓) Haus. (↓) Wass. (↓)

1 83.141 (10.270) 0.775 (0.137) 86.543 (14.505) 0.873 (0.152)

2 7.499 (1.686) 0.196 (0.039) 8.264 (3.395) 0.219 (0.074)

3 137.598 (27.392) 2.973 (0.397) 181.608 (11.925) 110.020 (4.215)

6 Real data application

In this section, we apply the proposed method to two noisy and complex real-world datasets

where monotonicity is reasonably assumed or observed by general curve-fitting methods.

To evaluate the robustness of our approach, we compare two estimated curves based on

different types of variable transformations. Variable transformation, a common preprocess-

ing step in machine learning, is used to stabilize training and meet statistical assumptions.

Ideally, a robust curve estimation method should produce consistent results regardless of

the chosen transformation technique, ensuring reliability in the decision-making process.

Co-movement of commodity prices Analyzing commodity prices in terms of inter-

dependence or reliance on economic indices is an important step toward gaining an in-

depth understanding of global economics and financial markets. We apply the proposed

method for modeling the future prices of copper, silver, and gold from August 30, 2000, to

November 6, 2024. Each commodity price is retrieved via the Yahoo Finance API in R1.

Rather than seeking economic insights, we attempt to address the advantage of enforcing

1quantmod::getSymbols(x, src = “yahoo”, from = “2000-08-30”, to = “2024-11-06”) # Insert

x=“HG=F” (“SI=F”, “GC=F”, resp.).
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(a) Prices (Pri.) are standardized (Stand.) after logarithmic transformation

(log(⋅)) before estimating the curves.

(b) Prices (Pri.) are standardized (Stand.) before estimating the curves.

Figure 4: Comparison of commodity prices: the prices of copper, silver and gold. Gray

points are observed data points. Ours and HS curves are colored blue and red respectively.

monotonicity in curve estimation for robust inference by comparing the results to those of

HS. To fit monotone curves, we use the same configuration as in the simulation section.

Figures 4 and 5 contrast the two estimated curves in R2 and R3 respectively. For the

case of R2, we compare the price pairs: copper vs silver and gold vs silver. The case of

R3 finds principal curves penetrating the middle of the three commodity prices. First,

since the observed commodity prices tend to become more dispersed as the prices increase,
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Figure 5: Comparison of commodity prices in R3: (Left) the prices are standardized after

logarithmic transformation, and (right) the prices are just standardized before estimation.

the prices go through the logarithmic transformation and then standardization. Figure 4a

displays the estimated HS curves monotonically increasing in both cases. This preceding

procedure practically means that an HS curve can play the role of a profile analysis to

justify using our monotone curve-fitting framework. Next, we find curves on data points

only with standardization to see the impact of transformation on curve estimation. As

shown in Figure 4b, while our curve maintains the overall increasing shape, the shape of

HS curve is inconsistent compared to Figure 4a. For the comparison between gold and

silver prices, the HS curve does not represent the monotonic relationship anymore, which

shows that the HS curve is sensitive to transforming variables. For the case of copper and

silver in Figure 4b, the downward curvature suddenly increases at 0.5 of Stand. Copper

Pri., pushing the curve sharply touches the point at its northernmost tip. This does not

look representing the middle of data from our perspective. Figure 5 compares the curves of

all the commodities and observes the same phenomenon, addressing that ours enjoys the

robustness in terms of variable transformation.
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Figure 6: Demand curves: plots in the left are of Chicago and in the right of San Francisco.

Demand curve of avocado data The Avocado Prices and Sales Volume data2 provides

a comprehensive overview of avocado market trends in the United States over eight years

between 2015 and 2023. The data includes important market information such as average

prices, sales volume, and bag sizes for conventional and organic avocados in various regions

of the United States. In this work, we are particularly interested in the joint relationship

between prices (AveragePrices) and sales volume (TotalVolume) because these variables can

be used to draw a demand curve for the avocado market. In economics, it is commonly

believed that product prices and sales volume are inversely related because of the law of

2https://www.kaggle.com/datasets/vakhariapujan/avocado-prices-and-sales-volume-2015-2023
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demand. We illustrate demand curves for organic avocados in San Francisco and Chicago.

The curve of HS is also drawn for comparison.

Figure 6 compares the demand curves of ours and HS. Because sales volume (TotalVolume)

are on a large scale, we consider transforming it by TotalVolume/10000 and log(TotalVolume).

HS shows a monotonically decreasing pattern in the case of the linear transformation but

nonmonotonic behaviors for the log transformation. In contrast, ours maintains a monoton-

ically decreasing relationship regardless of the type of transformation. Although the curves

of San Francisco have slightly different curvatures in higher prices, the overall monotonic

shape remains. In general, when developing an operational strategy for a business, accu-

rate and robust estimation of a demand curve is critical because it can be used to optimize

pricing strategies and resource allocation in order to maximize potential revenue or profit.
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SUPPLEMENTARY MATERIAL

Title: Monotone Curve Estimation via Convex Duality

A Proof

A.1 Lemmas

Here we present a few known facts with proofs for the sake of completeness.

Lemma A.1 For f = (fi)ki=1 in duality, the set Γf = {x ∈ Rk ∣H(x; f) = 0} is monotone.

Proof of Lemma A.1 Assume x = (xi)
k
i=1, y = (yi)

k
i=1 ∈ Γf . For c(x) = ∑1≤i<j≤k xixj, it holds

c(x) + c(y) ≥ c(x1, ..., xi−1, yi, xi+1, ..., xk) + c(y1, ..., yi−1, xi, yi+1, ..., yk) ∀i ∈ [k], (10)

since RHS ≤ (∑j≠i(fj(xj) + fj(yj))) + (fi(yi) + fi(xi)) = ∑j(fj(xj) + fj(yj)) = c(x) + c(y),

where the equality holds since x,y ∈ Γf . Let di ∶= xi − yi, i ∈ [k]. Then (10) is equivalent to

di ⋅ (∑
j≠i

dj) ≥ 0, ∀i ∈ [k]. (11)

Without loss of generality, we may assume d1 > 0. Then ∑j≥2 dj ≥ 0. If d2 < 0, then (11)

gives d1+∑j≥3 dj ≤ 0, but d1+∑j≥3 dj = d1−d2+∑j≥2 dj ≥ d1−d2 > 0, yielding a contradiction.

We conclude that di ≥ 0 for all i ≠ 1, which proves the monotonicity of Γf .

Lemma A.2 Let I, J be compact intervals in R. For any δ ∈ (0,1], the δ-covering number

Nδ for the set of 1-Lipschitz functions from I to J , with respect to the sup-norm, satisfies

logNδ ≤
∣I ∣ log 3

δ
+ log (

1

δ
) + log(9∣J ∣ + 27).

Proof of Lemma A.2. We can let I = [−a, a] and J = [−b, b]. Let k,m ∈ N satisfy (k − 1)δ <

a ≤ kδ and (m − 1)δ < b ≤mδ. Let I ′ ∶= [−kδ, kδ], J ′ ∶= [−mδ,mδ]. We discretize I ′, J ′ by

V ∶= {−kδ,−(k − 1)δ, . . . , (k − 1)δ, kδ}, W ∶= {−mδ,−(m − 1)δ, . . . , (m − 1)δ,mδ}.
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Let S be the set of functions ϕ from V to W such that for any k ∈ Z with kδ, (k + 1)δ ∈ V ,

ϕ((k + 1)δ) − ϕ(kδ) ∈ {−δ,0, δ}. (12)

Then we have

∣S∣ ≤ ∣W ∣ ⋅ 3∣V ∣−1 = (2m + 1) ⋅ 32k. (13)

For any ϕ ∈ S, define its extension ϕ̃ ∶ I ′ → J ′ to be a linear interpolation of ϕ. (12) implies

ϕ̃ is 1-Lipschitz. We claim that for any 1-Lipschitz function f ∶ I ′ → J ′, there exists ϕ ∈ S

such that ∣∣f − ϕ̃∣∣∞ ≤ δ. To see this, we construct a function ϕ ∶ V →W as follows:

ϕ(δn) ∶= the closest element in W to f(δn),

and if f(δn) = δ(m+ 1
2) so there is a tie, then we set ϕ(δn) ∶= δm. Since f is 1-Lipschitz, ϕ

satisfies (12) and thus ϕ ∈ S. Finally, it is clear that ∥f − ϕ̃∥∞ ≤ δ. This implies ∣Nδ ∣ ≤ ∣S∣.

By k < a
δ + 1, m <

b
δ + 1 and δ ≤ 1, (13) gives

log ∣S∣ ≤ log( ∣J ∣δ + 3) + (
∣I ∣
δ + 2) log 3

≤ log(1δ ) + log(∣J ∣ + 3) +
∣I ∣ log 3

δ + 2 log 3

≤
∣I ∣ log 3+log(9∣J ∣+27)

δ

where we use log(1/δ) ≤ 1/δ−1. Then log 2 ≤ log 2/δ yields log(2∣S∣) ≤ (∣I ∣ log 3 + log(18∣J ∣ + 54))/δ.

A.2 Theorem 3.1

Let L(f) ∶= EX∼µ[H(X; f)+λ∥X−γf(s(X))∥2]. For any f ∈ Dk in duality, we have L(f) < ∞,

since H(x; f) ≤ c(1 + ∣x∣2) for some c > 0, while (γf)i = (∂gi)−1 is 1-Lipschitz. And if

f = (k − 1)(q, . . . , q), then f is c-conjugate and is in Dk since we assume m2 ≥ k − 1. Hence

the problems (3), (4) are well defined with nonempty domains, respectively.
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Let fn = (f1,n, . . . , fk,n) denote a minimizing sequence for the functional L, with each fn ∈

Dk in duality. We show that one can extract a subsequence of fn converging to a minimizer

of L. By Arzelà–Ascoli theorem, there exists a subsequence of (fn)n (still denoted by

(fn)n) such that each fi,n and its derivatives f ′i,n, f
′′
i,n converge uniformly on every compact

subset of R to some function fi and its derivatives f ′i , f
′′
i , respectively, as n → ∞. Thus

f = (f1, . . . , fk) is in Dk, and the bound 0 ≤H(x; f) + λ∥x− γf(s(x))∥2 ≤ C(1+ ∥x∥2) allows

us to apply the Lebesgue dominate convergence theorem to deduce limn→∞L(fn) = L(f),

showing f is a minimizer of L.3

For the problem (4), we need to show S(Γf) = R, assuming S(Γfn) = R for all n ∈ N.

Bartz et al. (2021) showed that the maximality S(Γf) = R is equivalent to the condition

Proxf1 +⋯ +Proxfk = (∂g1)
−1 +⋯ + (∂gk)

−1 = Id on R, (14)

where Proxfi(x) ∶= argmin
p∈R

(fi(p) + ∣x − p∣
2/2) = (∂gi)

−1(x) with gi = fi + q.

Fix s ∈ R and let pi ∶= Proxfi(s) and pi,n ∶= Proxfi,n(s). Then pi is the unique solution

to the equation g′i(p) = s. Since 1 ≤ g′′i,n ≤ m2 + 1 and g′′i,n → g′′i locally uniformly, where

gi,n = fi,n + q, we deduce limn→∞ pi,n = pi. This yields (14), thus concludes the proof.

A.3 Theorem 3.2

We establish the upper bound of the expected empirical MSE. Recall µ̂ = ∑
n
m=1 δXm/n

denotes the empirical distribution given i.i.d. random samples (Xm)
n
m=1, f̂ = (f̂1, . . . , f̂k)

is an empirical minimizer (i.e. f̂ minimizes (4) given µ̂), and γ̂(s) = ((ĝ′i)
−1(s))

i∈[k] is

the resulting parametrized curve where ĝi = f̂i + q. Meanwhile, γ(s) = ((g′i)
−1(s))

i∈[k]

parametrizes Γ, where f = (f1, . . . , fk) is defined as in (2) and gi = fi + q.

3Here C > 0 does not depend on f ; see (29) where it is shown that ∣γi(0)∣ ≤m1.
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Bound on the expected empirical MSE. Since f̂ is an empirical minimizer, we have

1

n

n

∑
m=1
[

k

∑
i=1

ĝi(Xi,m) −
1

2
s(Xm)

2 + λ∥Xm − γ̂(s(Xm))∥
2]

≤
1

n

n

∑
m=1
[

k

∑
i=1

gi(Xi,m) −
1

2
s(Xm)

2 + λ∥Xm − γ(s(Xm))∥
2] (15)

(recall Remark 2.2). We estimate an upper bound of the RHS. Since fi, f̂i ∈ Cm, we have

1 ≤ g′′i ≤m2 + 1 and 1 ≤ ĝ′′i ≤m2 + 1 for every i ∈ [k]. (16)

Recalling the population model X =U +R, we write Xi,m = Ui,m +Ri,m. By (16),

k

∑
i=1

gi(Ui,m +Ri,m) −
1

2
(

k

∑
i=1
(Ui,m +Ri,m))

2

≤
k

∑
i=1
(gi(Ui,m) + g

′
i(Ui,m)Ri,m +

m2 + 1

2
R2

i,m) −
1

2
(

k

∑
i=1
(Ui,m +Ri,m))

2

=
k

∑
i=1

g′i(Ui,m)Ri,m +
m2 + 1

2

k

∑
i=1

R2
i,m − (

k

∑
i=1

Ui,m)(
k

∑
i=1

Ri,m) −
1

2
(

k

∑
i=1

Ri,m)
2

(17)

≤
k

∑
i=1

g′i(Ui,m)Ri,m +
m2 + 1

2

k

∑
i=1

R2
i,m − (

k

∑
i=1

Ui,m)(
k

∑
i=1

Ri,m) (18)

where the equality is due to Um ∈ Γ which yields ∑
k
i=1 gi(Ui,m) − (∑

k
i=1Ui,m)

2/2 = 0. Using

the independence of Um and Rm, E[∥R∥2] = ∑k
i=1E[R2

i,m], and E[R] = 0, we deduce

E[ 1
n

n

∑
m=1
[

k

∑
i=1

gi(Xi,m) −
1

2
(

k

∑
i=1

Xi,m)
2

]] ≤
m2 + 1

2
E[∥R∥2]. (19)

If E[RiRj] = 0 for all i ≠ j, then using (17), we obtain the bound m2E[∥R∥2]/2 in (19).

Next, using Um = γ(s(Um)) due to Um ∈ Γ, and s(Um) = s(Xm) − s(Rm), we compute

∥Xm − γ(s(Xm))∥
2 = ∥Um +Rm − γ(s(Xm))∥

2

= ∥γ(s(Xm) − s(Rm)) +Rm − γ(s(Xm))∥
2

≤ 2∥γ(s(Xm) − s(Rm)) − γ(s(Xm))∥
2 + 2∥Rm∥

2

≤ 2∣s(Rm)∣
2 + 2∥Rm∥

2, (20)
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where we use ∥γ(s) − γ(t)∥ ≤ ∣s − t∣ for any s, t ∈ R, which holds because, for any s > t,

∥γ(s) − γ(t)∥2 =
k

∑
i=1
(γi(s) − γi(t))

2 ≤ (
k

∑
i=1
(γi(s) − γi(t)))

2

= (s − t)2

where we use ∑
k
i=1 γi = Id on R, which is equivalent to the c-conjugacy of f (see (14)).

Combining (18), (20), and the inequality E∣s(Rm)∣
2 ≤ k∑iE[R2

i,m] = kE[∥R∥2], yield

E[RHS of (15)] ≤ (m2+1
2 + 2λ(k + 1))E[∥R∥2]. (21)

If E[RiRj] = 0 for i ≠ j, then E∣s(Rm)∣
2 = E[∥R∥2], hence in this case,

E[RHS of (15)] ≤ (m2

2 + 4λ)E[∥R∥
2]. (22)

We now estimate a lower bound of the LHS in (15). For each m = 1, ..., n, we write

k

∑
i=1

ĝi(Xi,m) −
1

2
s(Xm)

2 = [
k

∑
i=1
(ĝi(Xi,m) − ĝi(γ̂i(s(Xm))))]

+ [
k

∑
i=1

ĝi(γ̂i(s(Xm))) −
1

2
(

k

∑
i=1

γ̂i(s(Xm)))
2

]

+ [
1

2
(

k

∑
i=1

γ̂i(s(Xm)))
2

−
1

2
s(Xm)

2]. (23)

The second term in (23) is non-negative since ∑
k
i=1 ĝi(xi) − (s(x))2/2 ≥ 0 for any x ∈ Rk,

while the third term vanishes due to the identity ∑
k
i=1 γ̂i = Id. Meanwhile, using (16), we

deduce that the first term in (23) is not smaller than

k

∑
i=1
[(ĝi)

′(γ̂i(s(Xm)))(Xi,m − γ̂i(s(Xm))) +
1

2
(Xi,m − γ̂i(s(Xm)))

2]

=
1

2

k

∑
i=1
(Xi,m − γ̂i(s(Xm)))

2 =
1

2
∥Xm − γ̂(s(Xm))∥

2,

where we used the fact γ̂i = (ĝ′i)
−1 and the identity ∑

k
i=1 γ̂i = Id.

5



Using Um = γ(s(Um)) and the inequality ∥a − b∥2 ≥ ∥a∥2/2 − ∥b∥2, we compute

1
2∥Xm − γ̂(s(Xm))∥

2 = 1
2∥Um +Rm − γ̂(s(Xm))∥

2

= 1
2∥γ(s(Xm) − s(Rm)) +Rm − γ̂(s(Xm))∥

2

= 1
2∥[γ(s(Xm)) − γ̂(s(Xm))] − [γ(s(Xm)) − γ(s(Xm) − s(Rm)) −Rm]∥

2

≥ 1
4∥γ(s(Xm)) − γ̂(s(Xm))∣∣

2 − 1
2∥γ(s(Xm)) − γ(s(Xm) − s(Rm)) −Rm∥

2

≥ 1
4∥γ(s(Xm)) − γ̂(s(Xm))∥

2 − ∥γ(s(Xm)) − γ(s(Xm) − s(Rm))∥
2 − ∥Rm∥

2

≥ 1
4∥γ(s(Xm)) − γ̂(s(Xm))∥

2 − ∣s(Rm)∣
2 − ∥Rm∥

2.

Combining the three lower bound estimates and taking the expectation, we deduce

E[LHS of (15)] ≥
1

n

n

∑
m=1
(
1

2
+ λ)E[∥Xm − γ̂(s(Xm))∥

2]

≥
2λ + 1

n

n

∑
m=1
(
1

4
E[∥γ(s(Xm)) − γ̂(s(Xm))∥

2] − (k + 1)E[∥R∥2])

=
2λ + 1

4
Eemp

n − (2λ + 1)(k + 1))E[∥R∥2]. (24)

In addition, if R has mutually uncorrelated components, due to E∣s(Rm)∣
2 = E[∥R∥2],

E[LHS of (15)] ≥
2λ + 1

4
Eemp

n − 2(2λ + 1)E[∥R∥2]. (25)

As a result, (15), (21) and (24) (or (15), (22) and (25)) yield an upper bound for Eemp
n :

Eemp
n ≤

(16λ + 4)k + 16λ + 2m2 + 6

2λ + 1
E[∥R∥2], and moreover,

Eemp
n ≤

32λ + 2m2 + 8

2λ + 1
E[∥R∥2] if E[RiRj] = 0 for every i ≠ j. (26)

Remark A.1 Assumption ii), i.e., f ∈ (Cm)k, implies that the monotone functions Γij

in (2) for each i ≠ j is C1 smooth with positive lower and upper bound on its derivative:

1/m2 ≤ Γ′ij(x) ≤m2 for all i ≠ j and x ∈ R. To see this, observe that (2) implies

f ′i(xi) =
i−1
∑
j=1

Γij(xi) +
k

∑
j=i+1

Γij(xi) Ô⇒ f ′′i (xi) =
i−1
∑
j=1

Γ′ij(xi) +
k

∑
j=i+1

Γ′ij(xi). (27)
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Γij being C1 for all i ≠ j is implied by their monotonicity and the assumption fi ∈ C2(R).

Now (27) implies Γ′ij ≤m2 from f ′′i ≤m2, which in turn impies Γ′ij ≥ 1/m2 since Γji = Γ−1ij .

A.4 Theorem 3.3

This section provides proof of the estimation gap and the generalized MSE in order. We

suppose the assumptions used in Theorem 3.2 hold.

Gap estimation between Egen
n and Eemp

n . Let (Ym)
n
m=1 be i.i.d. random vectors with

Ym
d
=X ∼ µ and (Ym)

n
m=1 are independent of all other random variables. Then we write

Egen
n −E

emp
n = E[ 1

n

n

∑
m=1
[∥γ(s(Ym)) − γ̂(s(Ym))∥

2 − ∥γ(s(Xm)) − γ̂(s(Xm))∥
2]]

= E[ 1
n

n

∑
m=1

k

∑
i=1
[∣γi(s(Ym)) − γ̂i(s(Ym))∣

2 − ∣γi(s(Xm)) − γ̂i(s(Xm))∣
2]]. (28)

Let ∆i ∶= γi − γ̂i. Note that, for any φ ∈ C(R) and m ≥ 0, the following holds:

If ∣φ(0)∣ ≤m and φ(y) − φ(x) ≥ y − x for any y > x, then ∣φ−1(0)∣ ≤m, (29)

since ∣φ−1(0)∣ ≤ ∣φ(φ−1(0))−φ(0)∣ ≤m. Now recall γi = (g′i)
−1 = (f ′i + Id)

−1 for some fi ∈ Cm.

Applying (29) with φ = g′i, m = m1 implies ∣γi(0)∣ ≤ m1, and similarly ∣γ̂i(0)∣ ≤ m1. Hence,

∣∆i(0)∣ ≤ 2m1. Also recall that γi and γ̂i are nondecreasing 1-Lipschitz functions, implying

that ∆i is 1-Lipschitz on R.

Since µ is compactly supported, there exists κ ≥ 0 such that s(X) ∈ I ∶= [−κ,κ] almost

surely. Define J = [−2m1 − κ,2m1 + κ] so that any 1-Lipschitz function φ on R with

∣φ(0)∣ ≤ 2m1 satisfies φ(x) ∈ J for all x ∈ I. Define the set of functions L = {φ ∶ I →

J ∣φ is 1-Lipschitz}, equipped with the sup norm ∥φ∥∞ ∶= supx∈I ∣φ(x)∣. Note that ∆i ∈ L

(if restricted on I) for all i ∈ [k]. Since L is compact by Arzelà–Ascoli theorem, for any

δ > 0, there exists Nδ ∈ N and functions w1, ...,wNδ
∈ L such that for any φ ∈ L, ∥φ−wj∥∞ ≤ δ
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for some j ∈ [Nδ]. In fact, we have

log 2Nδ ≤
∣I ∣ log 3+log(18∣J ∣+54)

δ for any δ ∈ (0,1]. (30)

See Gottlieb et al. (2016, 2014) for the references and Lemma A.2 in Appendix for the

proof.

Now observe that, for each i ∈ [k], there exists a random index ri ∈ [Nδ] such that

∥∆i −wri∥∞ ≤ δ.

The randomness of ri stems from the randomness of γ̂, which depends on random samples

(Xm)
n
m=1. Define hℓ(x,y) ∶= ∣wℓ(s(y))∣2 − ∣wℓ(s(x))∣2, ℓ ∈ [Nδ]. We can bound (28) as

∣Egen
n −E

emp
n ∣

≤ ∣E[ 1
n

n

∑
m=1

k

∑
i=1

hri(Xm,Ym) +
1

n

n

∑
m=1

k

∑
i=1
(∆i(s(Ym))

2 −∆i(s(Xm))
2 − hri(Xm,Ym))]∣

≤ ∣E[ 1
n

n

∑
m=1

k

∑
i=1

hri(Xm,Ym)]∣ + 4kMδ, (31)

where M ∶= 2m1 + κ, which yields ∥∆i + hri∥∞ ≤ 2M , hence ∥∆2
i − h

2
ri
∥∞ ≤ 2Mδ.

For any fixed index ℓ ∈ [Nδ], since {hℓ(Xm,Ym)}m=1,...,n are i.i.d. uniformly bounded

(by M2) and centered random variables, Hoeffding’s concentration inequality implies

P(∣
n

∑
m=1

hℓ(Xm,Ym)∣ ≥ t) ≤ 2e
−t2/2nM4

.

This, combined with a union bound P(⋃∞j=1Aj) ≤ ∑
∞
j=1 P(Aj) for any events (Aj)j, implies

P(∣
n

∑
m=1

hri(Xm,Ym)∣ ≥ t) ≤min{1,2Nδe
−t2/2M4n} for any i ∈ [k].

Hence, for any u > 0, we have

E∣
n

∑
m=1

hri(Xm,Ym)∣ = ∫

∞

0
P(∣

n

∑
m=1

hri(Xm,Ym)∣ ≥ t)dt

≤ ∫

u

0
dt + 2Nδ ∫

∞

u
e−t

2/2M4ndt

≤ u + 2NδM
2
√
2πne−u

2/2M4n,
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where we use a Gaussian tail bound ∫
∞
u e−t

2/2σ2
dt/
√
2πσ2 ≤ e−u

2/2σ2
.

Choosing u to solve 2Nδe−u
2/2M4n = 1⇔ u2 = 2M4n log(2Nδ), we deduce

E∣ 1
n

n

∑
m=1

hri(Xm,Ym)∣ ≤M
2
√
2/n(
√
π +
√
log 2Nδ).

This, along with (31), (30) and taking δ = n−1/3 yields

∣Egen
n −E

emp
n ∣ ≤ kM2(2π)1/2n−1/2 + kM2(2C)1/2n−1/3 + 4kMn−1/3, (32)

where C = ∣I ∣ log 3+ log(18∣J ∣ +54). Using ∣I ∣ = 2κ, ∣J ∣ = 2(2m1 +κ), δ ≤ 1, and n−1/2 ≤ n−1/3,

from (32), we can deduce the bound ∣Egen
n −E

emp
n ∣ ≤ C ′kn−1/3 in Theorem 3.3 with

C ′ = (2m1 + κ)(
√
2(2m1 + κ)(

√
π +
√
2κ log 3 + log(36(2m1 + κ) + 54) ) + 4). (33)

This completes the proof.

B Simulation

B.1 Implementation of competing methods

The open source libraries of each method appear in the footnotes of HS4, SCMS5, and

ours6.

B.2 Additional tables

This section includes Tables 7 and 8 that summarize the scores for the choice of different

λ and τ . With Table 5 in the manuscript, these additional tables support the discussion in

Section 5.3.1 about the hyperparameter tuning strategy.

4The R package is available at https://cran.r-project.org/web/packages/princurve/.
5The Python library is available at https://github.com/zhangyk8/EuDirSCMS.
6https://anonymous.4open.science/r/mono_curve/README.md
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Table 7: Evaluation metrics for different choices of λ and τ when the data j = 1 in R2:

Refer to Table 5 for details.

τ λ Wass. Haus. LH LR LH +LR

0.1

1 1.005 (0.100) 88.087 (11.637) 7.672 (1.667) 25.679 (1.978) 33.351 (3.560)

10 0.637 (0.108) 77.970 (12.575) 7.268 (1.526) 24.511 (2.039) 31.779 (3.449)

100 0.555 (0.096) 78.474 (12.427) 8.075 (1.312) 24.860 (1.096) 32.935 (1.782)

1

1 2.844 (0.431) 103.487 (9.538) 8.010 (2.287) 27.490 (1.894) 35.500 (4.015)

10 ∗0.775 (0.137) ∗83.141 (10.270) 7.008 (1.101) 24.327 (2.308) 31.335 (3.222)

100 0.561 (0.077) 78.993 (13.812) 7.063 (1.454) 24.319 (1.612) 31.382 (2.673)

10

1 3.997 (0.155) 90.060 (12.504) 8.732 (1.620) 29.641 (2.523) 38.373 (4.037)

10 2.658 (0.896) 97.116 (12.473) 9.489 (1.986) 27.004 (2.554) 36.493 (4.370)

100 0.661 (0.098) 83.194 (13.019) 7.849 (1.630) 24.202 (2.029) 32.051 (3.342)

Table 8: Evaluation metrics for different choices of λ and τ when the data j = 2 in R2:

Refer to Table 5 for details.

τ λ Wass. Haus. LH LR LH +LR

0.1

1 0.185 (0.039) 7.527 (2.721) 3.259 (0.473) 20.785 (1.028) 24.044 (1.359)

10 0.181 (0.032) 7.765 (2.623) 4.175 (0.744) 21.221 (1.447) 25.396 (1.621)

100 0.168 (0.037) 6.943 (2.792) 3.869 (0.820) 21.046 (0.986) 24.915 (1.553)

1

1 ∗0.196 (0.039) ∗7.499 (1.686) 3.156 (0.710) 19.608 (1.797) 22.764 (2.322)

10 0.166 (0.020) 6.931 (2.896) 4.269 (0.650) 21.838 (1.165) 26.107 (1.520)

100 0.187 (0.036) 7.629 (2.946) 3.911 (0.748) 21.187 (1.150) 25.098 (1.317)

10

1 0.379 (0.243) 9.924 (3.540) 3.917 (0.653) 19.537 (1.690) 23.454 (2.119)

10 0.211 (0.038) 7.727 (2.130) 4.728 (0.721) 19.674 (1.184) 24.402 (1.658)

100 0.198 (0.028) 8.227 (2.353) 5.556 (1.423) 20.355 (1.283) 25.912 (2.229)
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