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Abstract

Considering higher-order interactions allows for a more comprehensive understand-
ing of network structures beyond simple pairwise connections. While leveraging all
cliques in a network to handle higher-order interactions is intuitive, it often leads
to computational inefficiencies due to overlapping information between higher-order
and lower-order cliques. To address this issue, we propose an augmented maximal
clique strategy. Although using only maximal cliques can reduce unnecessary overlap
and provide a concise representation of the network, certain nodes may still appear
in multiple maximal cliques, resulting in imbalanced training data. Therefore, our
augmented maximal clique approach selectively includes some non-maximal cliques to
mitigate the overrepresentation of specific nodes and promote more balanced learning
across the network. Comparative analyses on synthetic networks and real-world cita-
tion datasets demonstrate that our method outperforms approaches based on pairwise
interactions, all cliques, or only maximal cliques. Finally, by integrating this strat-
egy into GNN-based semi-supervised learning, we establish a link between maximal
clique-based methods and GNNs, showing that incorporating higher-order structures
improves predictive accuracy. As a result, the augmented maximal clique strategy offers
a computationally efficient and effective solution for higher-order network learning.
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1 Introduction

Systems have been analyzed using various methodologies, often represented as graphs, which
involve identifying important nodes or hubs within the graph [1, 2]. However, many real-
world networks exhibit phenomena that cannot be fully explained by traditional graph-based
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approaches, which typically focus solely on pairwise interactions, i.e., interactions between
two nodes connected by an edge. For instance, economic activities rely on agreements among
buyers, sellers, and intermediaries [3], while relationships such as friendships [4] and large-
scale online networks [5] involve interactions among multiple nodes. Therefore, there is a need
to develop methods that extend beyond pairwise interactions to understand the mechanisms
of complex networks.

A notable approach to addressing the perspective of network analysis involves the appli-
cation of higher-order network methodologies, which are based on a probability framework
derived from the Stochastic Block Model (SBM) [6–9]. SBM, functioning as a generative
model, enables the construction of graphs that exhibit community structures within dis-
tinct node communities. This model leverages a comprehensive set of nodes, partitioned
into disjoint subsets covering all nodes, along with the probabilities of connections between
nodes within each subset, serving as its foundational parameters. SBM’s utility extends
to the exploration and elucidation of a network’s inherent structures, as well as to the fa-
cilitation of clustering endeavors [10]. Meanwhile, in the domain of traditional supervised
learning methodologies, the necessity for extensive labeled datasets for classification tasks
poses a significant challenge due to the difficulty of acquiring such data. To address the
labor-intensive process of data labeling, the field of semi-supervised learning has emerged as
a promising alternative [11]. This area is actively researched [12–14], typically involving the
strategic selection of a minimal subset of nodes to serve as prior knowledge in node classifi-
cation tasks. Empirical evidence suggests that even a limited amount of prior information
can significantly enhance prediction performance [15–19].

Recent advancements have introduced methodologies to leverage the capabilities of higher-
order interactions [20–22]. Specifically, in the context of semi supervised node classifica-
tion, [23] suggests utilizing node interactions within each higher-order clique in the network.
Throughout the optimization phase, the clique interaction-based optimization scheme in
their work enforces a requirement for nodal entities within a given clique to exhibit similar
probability distributions, based on the hypothesis that nodes with dense interconnections
are likely to share similar distribution characteristics. Consequently, nodes situated within
higher-order cliques incur a greater penalty for distributional diversity compared to their
counterparts in lower-order cliques. This methodology has demonstrated superior perfor-
mance in classification tasks over traditional non-hypergraph approaches, which rely solely
on pairwise interactions. However, the comprehensive nature of higher-order cliques, which
integrate multiple lower-order cliques, renders the utilization of all cliques for learning pur-
poses inefficient. As a result, it appears clear that a meticulous choice of a subset of cliques
is required.

In this regard, focusing on maximal cliques offers a promising direction for such a selec-
tive approach. A maximal clique, by definition, is a clique that cannot be expanded through
the inclusion of an adjacent node, and therefore does not reside within a larger clique. We
derive the expected number of maximal cliques in networks generated by the Planted Par-
tition Model (PPM), a special case of SBM, and examine the fluctuation of this metric in
response to increases in node number and nodal connection probabilities. Building upon
this foundation, we propose an augmented maximal clique strategy that enhances the ba-
sic maximal clique approach by strategically incorporating additional non-maximal cliques
to balance learning frequencies across nodes. While maximal cliques form the core of our
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approach, we augment them with selected non-maximal cliques to address the inherent fre-
quency imbalance where some nodes appear more frequently in training cliques than others,
thereby ensuring a more uniform distribution of learning opportunities across the network
structure.

We conduct a comprehensive comparative analysis of prediction performance across four
different strategies (pairwise interaction approach, all-clique approach, maximal clique strat-
egy, and our proposed augmented maximal clique method) on synthetic graphs generated
using the PPM in both balanced and imbalanced settings. In the experiments, we initialize
the node probability distribution using discrete potential theory, leveraging an appropriate
Dirichlet boundary value problem on graphs, whose solution can be efficiently computed [24].

Furthermore, we propose a method to integrate the proposed strategy with GNN-based
semi-supervised learning techniques to achieve additional performance gains. Most GNN
models primarily focus on pairwise interactions between nodes and do not explicitly incor-
porate higher-order simplices into their objective functions. In contrast, the proposed strat-
egy directly utilizes numerous high-order maximal cliques scattered throughout the network
as key components of the objective function. By using the node classification prediction
vectors from GNN models as the initial node probability distribution in our approach, we
establish a connection between the two methods while effectively leveraging their respective
strengths. We investigate how leveraging the strengths of both approaches results in en-
hanced performance and validate these improvements through experiments on real citation
network datasets (Cora, CiteSeer, PubMed, and Coauthor-Physics.)

This work builds on our earlier study [23], which introduced a clique-based probabilistic
objective function. Although the overall structure of the objective function remains un-
changed, the current paper emphasizes enhancing computational efficiency and predictive
accuracy by presenting a new strategy for systematically selecting the cliques included in
the training objective.

Our contributions are outlined as follows:
• We derive the expected number of maximal cliques (as well as general cliques) in

the PPM, allowing us to analyze the distribution of higher-order cliques as the number of
nodes and connection probabilities increase. This provides quantitative evidence that the
maximal clique-based classification strategy in this paper significantly reduces computational
complexity compared to the all-clique strategy considered in [23].

• We empirically validate that the augmented maximal clique strategy outperforms
other approaches (pairwise interaction-based, all-clique, and maximal clique-only strategies)
through extensive experiments on both synthetic networks and real-world datasets.

This paper is structured as follows. Preliminaries are given in Section 2. The augmented
maximal clique strategy is described in Section 3. The experimental setup is detailed in
Section 4. The results are discussed in Section 5. The conclusion is presented in Section 6.
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2 Preliminaries

2.1 Hypergraphs

Conventional graph analysis primarily focuses on pairwise interactions between two nodes.
The objective of this paper is to propose an efficient strategy capable of leveraging the
hypergraph structure inherent in the underlying graph. A hypergraph is a generalization of
the traditional graph in which an edge can contain more than two nodes [21]. We describe
notation used for undirected hypergraphs in this study. An undirected graph G = (V,E)
consists of a node set V = {1, 2, . . . , N}, and an edge set E ⊂ {(i, j) | i, j ∈ V, i ̸= j}
where (i, j) = (j, i). A hypergraph generalizes E as E ⊂ 2V where 2V denotes the power
set of V , and we denote the hypergraph as H = (V, E). For a positive integer k, we define
σ = {n1, n2, . . . , nk} ∈ E as a k-clique if (ni, nj) ∈ E for every 1 ≤ i < j ≤ k. Let Kk

denote the set of all k-cliques in G, such that K1, K2, K3, and K4 represent the sets of
nodes, edges, triangles, and tetrahedra in G, respectively. The collection of all k-cliques in
G, denoted by K =

⋃M
k=1Kk, is referred to as the clique complex of the graph G, where M

represents the size of the largest clique in G. We interpret E as a subset of K in the context
of a hypergraph.

2.2 Planted Partition Model

The stochastic block model originates from the field of social networks [6]. In this model,
the node set is partitioned into disjoint nonempty subsets Ci for i = 1, 2, . . . , l, such that
V =

⋃l
i=1Ci and Ci ∩Cj = ∅ if i ̸= j. Additionally, there exists a symmetric l× l matrix of

edge probabilities, where the connection probability between two nodes u and v is the (i, j)
component of the matrix for all u ∈ Ci and v ∈ Cj. The Planted Partition Model (PPM)
represents a special case of the stochastic block matrix, where the entries of the l× l matrix
are constant p on the diagonal and q off the diagonal, with p > q. A key advantage of PPM
is that it can incorporate realistic factors such as noise and sparsity while maintaining a
clearly defined community structure.

2.3 Node Classification Algorithm Based on Random Walk on
Graphs

In semi-supervised node classification tasks, a widely used algorithm based on random walks
on a graph operates as follows. An unbiased random walk transitions from node i ∈ V to
node j ∈ V with probability 1/d if (i, j) ∈ E (i.e., i and j are adjacent), where d represents
the degree of i (the number of nodes adjacent to i). Given a node set V = {1, 2, ..., N} and
a label-index set I = {1, 2, ..., l}, each node corresponds to a label in I, where only a small
proportion of labels are known. For i ∈ I and y ∈ V , let pi(y) denote the probability that
a random walk starting from an unlabeled node y reaches an i-labeled node before reaching
any other labeled node. If argmaxi∈I pi(y) = k, the algorithm assigns the label k to the node
y. (If a node y already has the label k, then pi(y) = 1 if and only if i = k.)

The task is to determine pi(y) for all y ∈ V and i ∈ I. It is known that pi(y) can be
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derived as the solution to the following Dirichlet boundary value problem:

Lpi(x) = 0 if x ∈ F = (Ei ∪Hi)
c, (1)

pi(x) = 1 if x ∈ Ei,

pi(x) = 0 if x ∈ Hi,

where L = D − A is the graph Laplacian matrix, D and A are the degree and adjacency
matrices of the given graph G, respectively [25]. Ei is the set of i-labeled nodes, Hi is the
set of labeled nodes excluding i-labeled nodes.

Bendito, Carmona, and Encinas [24] proposed a novel approach to solve the Dirichlet
problem (1) using equilibrium measures. For any decomposition V = F ∪ F c where F and
F c are both non-empty, they proved the existence of a unique measure (function) v on V
such that Lv(x) = 1 (and v(x) > 0) for all x in F and Lv(x) = 0 (and v(x) = 0) for all x
in F c. This measure is called the equilibrium measure and denoted by vF . For V = F ∪ F c

where F and F c are the sets of unlabeled and labeled nodes, respectively, they showed that
the solution pi to (1) can be represented as:

pi(x) =
∑
z∈Ei

v{z}∪F (x)− vF (x)

v{z}∪F (z)
, x ∈ V. (2)

Since vF can be obtained by solving a linear program, (2) offers an efficient method for
solving the Dirichlet problem (1); see [24] for details. We refer to the algorithm described
above as RW, short for random walk. The RW method not only serves as a performance
benchmark for hypergraph-based strategies, but also plays a crucial role in node probability
initialization. This initial step lays the basis for the subsequent training of the objective
function that we shall now describe.

2.4 Clique-based Probabilistic Objective Function

We employ the clique-based probabilistic objective function for hypergraphs as proposed
in [23]. Given a graph with a node set V = {1, 2, ..., N} and a label set I = {1, 2, ..., l}, the
probability distribution assigned to a node j is denoted by pj = (pj1, p

j
2, . . . , p

j
l ), where p

j
i

denotes the probability that node j has label i, so that
∑l

i=1 p
j
i = 1 for all j ∈ V . Recall

that Kk denotes the set of k-cliques, and M is the maximum possible value of k in the
graph. Define the permutation set with repetitions (denoted by Sk) as the set of ordered
and repetition-allowed arrangements of k elements in I = {1, ..., l}, so that |Sk| = lk. Then,
the proposed objective function on hypergraph for node classification is given by

J =
M∑
k=2

Wk

∑
(n1,...,nk)∈Kk

∑
(m1,...,mk)=θ∈Sk

Cθp
n1
m1
pn2
m2
. . . pnk

mk
(3)

where Wk > 0 are weight parameters, Cθ :=
(

k
e1,e2,...,el

)
= k!

e1!e2!...el!
where ei is the number of

occurrences of the label i in θ = (m1,m2, . . . ,mk) such that
∑l

i=1 ei = k. Observe that Cθ is
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larger as the label frequencies e1, e2, ..., el are more uniform. Now the optimization problem
we consider is:

Minimize J over ∆N = ∆1 ×∆2 × · · · ×∆N (4)

where ∆j = {pj = (pji )i∈I |
∑l

i=1 p
j
i = 1, pji ≥ 0} is the probability simplex in Rl. Observe

that the objective function J assigns a higher penalty to cliques with a greater diversity
of labels and vice versa, for each k-clique. The penalties are summed for all k-cliques,
and then aggregated with weight Wk for each Kk. This function is formulated under the
hypothesis that nodes within higher-order cliques in the network tend to have similar labels.
Consequently, the objective function is designed such that higher-order cliques exert greater
pressure on their constituent nodes to adopt similar labels compared to lower-order cliques.

It is worth noting that the problem of finding all maximal cliques in a graph, known
as Maximal Clique Enumeration (MCE), is a fundamental challenge in graph theory. The
Bron-Kerbosch algorithm [26] is a pioneering backtracking method developed for this task.
Subsequent research has focused on improving its worst-case time complexity, with Tomita’s
algorithm [27], which optimizes the pivot selection strategy, being a widely recognized and
influential benchmark. While our work does not propose a new enumeration algorithm,
we build upon the outputs of such standard methods to develop our higher-order node
classification framework.

2.5 Literature Review on Graph Semi-Supervised Learning

Graph Semi-Supervised Learning (GSSL) utilizes graph structures to improve learning per-
formance when labeled data is scarce. It leverages the relationships between nodes in a
graph, propagating label information from labeled to unlabeled nodes based on structural
similarities. Methodologies for GSSL can be broadly categorized into graph regularization,
matrix factorization-based methods, random walk-based methods, and Graph Neural Net-
work (GNN)-based models.

Graph regularization methods leverage the manifold assumption to learn from the struc-
ture of the graph. One of the primary techniques in this category is Label Propagation
(LP) [28], which propagates information from labeled nodes to unlabeled ones. This category
includes Gaussian Random Fields (GRF) [29] and Local and Global Consistency (LGC) [30].
Additionally, general graph regularization techniques include manifold regularization [31,32]
that utilizes the graph Laplacian to smooth the relationships between nodes.

Matrix factorization-based methods learn low-dimensional representations of nodes by
decomposing matrices that capture similarities between them. A well-known method is
Laplacian eigenmaps [33], which utilize the graph Laplacian matrix for node embedding.
Graph Factorization (GF) [34] directly decomposes the adjacency matrix to obtain node
representations, while GraRep [35] factors multi-step transition probability matrices to cre-
ate meaningful node embeddings. HOPE [36] further preserves higher-order proximity by
decomposing asymmetric matrices, maintaining structural information in a more refined
way. On the other hand, random walk-based methods use stochastic sampling techniques
to traverse the graph and capture structural information. DeepWalk [37] is a widely used
approach in this category, generating random walk sequences from the graph and training
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node embeddings using a Word2Vec-inspired model. Node2Vec [38] extends this idea by in-
corporating biased random walks that balance between breadth-first search and depth-first
search, allowing it to capture more nuanced relationships. Planetoid [39] further integrates
random walks with additional semi-supervised learning mechanisms to enhance prediction
performance.

GNN-based models use Graph Neural Networks to extract rich node representations.
Graph Convolutional Networks (GCN) [40] apply convolutional operations over graph struc-
tures to generate node embeddings. Graph Attention Networks (GAT) [41] introduce an at-
tention mechanism that assigns different weights to neighbors, enabling more fine-grained fea-
ture learning. Simplifying Graph Convolutional networks (SGC) [42] removes non-linearities
between GCN layers and collapses weight matrices, significantly reducing computational
overhead while maintaining comparable performance. GraphSAGE [43] improves scalability
by sampling neighbor nodes instead of using the entire graph during training. Jumping
Knowledge Networks (JKNet) [44] aggregate representations from multiple layers to capture
hierarchical information and improve prediction accuracy.

Finally, recent studies have further advanced graph representation learning by explor-
ing a variety of approaches to leverage complex graph structures. For instance, Motif-based
GNNs (MGNN) explicitly incorporate predefined higher-order structures, including triangles
(i.e., 3-cliques), to capture local topology beyond simple pairwise edges [45]. In contrast,
other methodologies that do not rely on predefined structures have also been actively in-
vestigated. Probabilistic approaches, exemplified by SDMG [46], implicitly capture complex
relationships by learning the graph’s overall distribution through diffusion models. Mean-
while, methods that take an adaptive approach, notably CSSE [47], utilize neural architecture
search to discover and encode the most informative subgraph patterns for a given task, which
offers an alternative to clique-based methodologies like ours.

3 Augmented Maximal Clique Approach

Recent research findings (referenced in [48, 49] for instance) underscore that integrating
higher-order cliques into the training process substantially improves node classification per-
formance. This enhancement stems from the recognition that higher-order cliques capture a
more intricate network of node relationships, thereby providing a richer context for learning
algorithms. Specifically, the objective function (3) is tailored to apply increased pressure on
nodes within these complex cliques to adopt more homogeneous labels. However, addressing
the minimization problem of J on the domain ∆N becomes exceedingly challenging due to
the rapidly increasing number of total cliques in the graph. Furthermore, this approach
suffers from a frequency imbalance problem, as nodes that appear in multiple cliques are
trained more frequently, potentially biasing the learning process.

This paper is motivated by the question of how to effectively reduce the computational
complexity associated with problem (4) while preserving the enhanced prediction perfor-
mance through higher-order clique interactions, and how to address the frequency imbalance
issue where nodes appearing in multiple cliques are overrepresented during the training pro-
cess. As a result, we propose the augmented maximal clique strategy, using an objective
function that leverages maximal cliques along with select additional cliques, rather than re-
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Figure 1: In the graph in (a), there are 16 cliques: K2 =
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (4, 5), (5, 6), (5, 7), (6, 7)}, K3 =
{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4), (5, 6, 7)}, and K4 = {(1, 2, 3, 4)}. On the other
hand, there are 3 maximal cliques: Q2 = (4, 5), Q3 = (5, 6, 7), and Q4 = (1, 2, 3, 4). An

illustration of the ratio
∑4

k=2 E[|Kk|]∑4
k=2 E[|Qk|]

in Example 1 is presented in (b).

lying on all cliques in the network. A maximal clique is a clique that is not a subset of a
larger clique (Figure 1(a)). Let Q (Qk) denote the set of maximal cliques (maximal k-cliques)
in G. At first, we investigate the reduced objective function

JQ =
M∑
k=2

Wk

∑
(n1,...,nk)∈Qk

∑
(m1,...,mk)=θ∈Sk

Cθp
n1
m1
. . . pnk

mk
. (5)

As no clique subsumes other cliques appearing in JQ, no clique interaction is counted twice
in JQ. To illustrate the computational reduction achieved using JQ, we derive the expected
number of all cliques and maximal cliques in a network generated by PPM. We begin with
a simple example.

Example 1. Let V = {a, b, c, d} and I = {1, 2}, so there are four nodes and two labels
in the network. Let the nodes C1 = {a, b} carry label 1, and the nodes C2 = {c, d} carry
label 2. Let the graph G = (V,E) be generated by PPM with parameters p, q as in Section
2.2. Then the expected number of edges in G, denoted by E[|K2|], is easily computed as
E[|K2|] = 2p+ 4q. Similarly, the expected number of triangles E[|K3|] =

(
4
3

)
pq2 = 4pq2, and

the expected number of tetrahedra E[|K4|] = p2q4. Hence, the expected number of cliques in
G is given by

∑4
k=2 E[|Kk|] = 2p+ 4q + 4pq2 + p2q4.

To calculate the expected number of maximal cliques in G, consider the edge (a, b) as an
example. For (a, b) to be a maximal clique in G, the condition is {(a, c), (b, c)} ⊈ E and
{(a, d), (b, d)} ⊈ E. That is, the edge (a, b) should not be contained in a triangle in G. The
probability of this occurring is (1−q2)(1−q2) = (1−q2)2. Thus, the probability of the existence
of the edge (a, b) with it being a maximal clique is p(1− q2)2. Similarly, the probability of the
existence of the edge (a, c) with it being a maximal clique is q(1−pq)2. Therefore, the expected
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number of maximal edges is 2p(1−q2)2+4q(1−pq)2. For a triangle (a, b, c) to be maximal, it
requires {(a, d), (b, d), (c, d)} ⊈ E, with a probability of 1− pq2. Hence, the expected number
of maximal triangles is 4pq2(1− pq2). Finally, the tetrahedron (a, b, c, d) is maximal, with a
probability of existence of p2q4 as before. Therefore, the expected number of maximal cliques
in the PPM is given by

∑4
k=2 E[|Qk|] = 2p(1 − q2)2 + 4q(1 − pq)2 + 4pq2(1 − pq2) + p2q4.

Figure 1(b) illustrates the ratio
∑4

k=2 E[|Kk|]∑4
k=2 E[|Qk|]

.

In Proposition 1 in Appendix A, we shall derive detailed explicit formulas and derivations
for the expected number of all cliques and maximal cliques for general N, p, q, enabling the
estimation of the computational efficiency of a strategy using only maximal cliques compared
to one using all cliques by evaluating the ratio of the number of cliques used.

The approach utilizing maximal cliques in (5) aims to eliminate redundant clique overlap
learning and improves computational efficiency. However, it still suffers from a key limitation
as (3), namely, the unevenly distributed in node participation frequency during training. In
particular, hub nodes in the network are still likely to appear in multiple maximal cliques,
leading to excessive learning for certain nodes. Meanwhile, some cliques participate very
infrequently in training, such as edges that do not contain hub nodes within some maximal
clique. The objective functions (3), (5) incorporate the probability vectors of nodes in each
clique into the training process, ensuring that training is concentrated on nodes with high
participation frequencies. Therefore, adjusting node participation frequencies to achieve
a more even distribution is essential for improving node classification performance. The
augmented maximal clique strategy to address this issue is as follows. First, we take the
set of maximal cliques as the initial clique set. For all nodes included in maximal cliques,
let the participation frequency be denoted as γ = (γ1, γ2, ..., γN) where N is the number of
nodes in network, and γi denotes the number of maximal cliques containing the ith node.
We define the mean participation frequency as Γ = 1/N

∑N
i=1 γi. Now, suppose we select

a k-clique ψ that is not a maximal clique (i.e., ψ ∈ K \ Q and |ψ| = k) and add it to the
set of maximal cliques. Let the updated participation frequency be γ′ = (γ′1, γ

′
2, ..., γ

′
N) after

this modification. We then compare the variance of γ and γ′. For each i = 1, 2, ..., N , let
ξi = γi−Γ, then it follows that

∑N
i=1 ξi = 0 and Var(γ) = 1/N

∑N
i=1(γi−Γ)2 = 1/N

∑N
i=1 ξ

2
i .

Similarly, for γ′i (which is γi + 1 if i ∈ ψ, γi otherwise), Γ
′ = 1/N(

∑N
i=1 γi + k) = Γ + k/N

and ξ′i = γ′i − Γ′ =

{
ξi + (1− k/N), i ∈ ψ,

ξi − k/N, otherwise,
hence

N∑
i=1

ξ′2i =
N∑
i=1

ξ2i + 2
∑
i∈ψ

ξi +
k(N − k)

N
. (6)

If the sum of the last two term is negative, the variance of γ′ becomes smaller than that of γ.
This means that by selecting ψ such that

∑
i∈ψ ξi <

k(k−N)
2N

, the learning frequency of nodes
can be made more evenly distributed. To systematically select these non-maximal cliques,
we employ a greedy iterative approach. This process begins with the initial set composed of
all maximal cliques and its corresponding variance of node participation frequencies. In each
iteration, we greedily select the single non-maximal clique from the candidates that yields
the greatest reduction in the current variance. Once a clique is added to the set, the node
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participation frequencies and variance are immediately updated, and this new state serves as
the baseline for the selection in the next iteration. This process is repeated until a predefined
budget (i.e., the maximum number of non-maximal cliques to be added) is exhausted or no
clique can be found that further improves the variance. The set of cliques resulting from this
procedure is defined as the augmented maximal clique set (denoted by Q), and the algorithm
is presented in Table 1.

Algorithm: Greedy Selection for Augmented Maximal Cliques

Input: Graph 𝐺 = (𝑉, 𝐸), Budget 𝐵, Sample size 𝑠
Output: Augmented Maximal Clique set ത𝑄

𝑄 ← Find all maximal cliques in 𝐺
ത𝑄 ← 𝑄
𝛾 ← Compute node participation frequencies based on ത𝑄
𝑣𝑎𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Compute the variance of 𝛾
𝐶𝑐𝑎𝑛𝑑 ← Generate all sub-cliques from 𝑄 and remove cliques in 𝑄

for 𝑖 = 1,2, … , 𝐵 do
𝜓∗ ← null
𝑣𝑎𝑟𝑚𝑖𝑛 ← 𝑣𝑎𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐶𝑠𝑎𝑚𝑝𝑙𝑒 ← Randomly sample 𝑠 candidates from 𝐶𝑐𝑎𝑛𝑑
for each candidate clique 𝜓 ∈ 𝐶𝑠𝑎𝑚𝑝𝑙𝑒 do

𝑣𝑎𝑟𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ← Compute potential variance assuming 𝜓 is added to ത𝑄

if 𝑣𝑎𝑟𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 < 𝑣𝑎𝑟𝑚𝑖𝑛 then

𝑣𝑎𝑟𝑚𝑖𝑛 ← 𝑣𝑎𝑟𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝜓∗ ← 𝜓

end if
end for

if 𝜓∗ ≠ null then
ത𝑄 ← ത𝑄 ∪ {𝜓∗}
𝐶𝑐𝑎𝑛𝑑 ← 𝐶𝑐𝑎𝑛𝑑\{𝜓

∗}
Update 𝛾 and 𝑣𝑎𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 based on the addition of 𝜓∗

else
break    // Terminate if no improvements is found

end if
end for
return ത𝑄

Table 1: Greedy algorithm for constructing the Aug-MAX set.

Under this definition, the objective function (3) becomes:

JQ =
M∑
k=2

Wk

∑
(n1,...,nk)∈Qk

∑
(m1,...,mk)=θ∈Sk

Cθp
n1
m1
. . . pnk

mk
. (7)

10



1 2

3

4

5

6

7 8

0

1

0

0

2

0

3

1

2

1

3

2

4

3

4

3

5

3

6

4

6

5

6

21

0

32

2

43

3

64

2

3

0

31

1

32

0 1

2 3

0

9

5

7

6

7

6

8

6

9

7

8

8

9

7

9

3

65

6

87

6

98

7

98

5

76

6

97

6 7

8 9

0

21

7

98

0

1

0

2

1

2

7

8

7

9

8

9

2

43

3

64

3

65

5

76

0 1

2 3

6 7

8 9

2-cliques

3-cliques

4-cliques

All cliques

Maximal cliques

Network

Augmented maximal cliques

2-cliques

3-cliques

4-cliques

1 2

3

4

5

6

7 8

0

9

Minimize Objective

0 1

2 3

6 7

8 9

2

43

3

64

3

65

5

76

0 1

2 3

6 7

8 9

2

43

3

64

3

65

5

76

0

1

0

2

1

2

7

8

7

9

8

9

0

21

7

98

Augmentation of the maximal cliques with additional cliques Training Classification

,

,

: prior-informed node

Figure 2: Overview of the experimental pipeline based on the augmented maximal clique
strategy. The model first selects cliques for learning by incorporating certain non-maximal
cliques into the set of maximal cliques (left), then performs learning on the resulting higher-
order network structure (middle), and finally conducts classification (right).

The objective (7) allows overlapping cliques to be learned, in contrast to the maximal clique
strategy (5). Figure 2 illustrates the concept of the augmented maximal clique strategy.

The computational complexity of the objective (3) associated to the problem (4) can
be estimated as O(

∑M
k=2 |Kk|lk), where l is the number of labels. In the maximal clique

approach, the complexity would be O(
∑M

k=2 |Qk|lk). This indicates that the efficiency of the
maximal clique strategy stems from the reduction in the number of cliques used for training.
Notably, Figure 3 shows that the proportion of maximal and augmented maximal cliques
relative to the total number of cliques is comparable, and that the augmented maximal clique
strategy significantly reduces the variance in node participation frequencies used for training.

4 Experimental setup

To assess the performance of the proposed strategy, this study considers balanced networks
and imbalanced networks generated by the PPM. The balanced graph consists of five labels
[100, 100, 100, 100, 100], meaning that each label corresponds to 100 nodes (i.e., |I| = 5
and |V | = N = 500). The intra-connection probability (connection probability between
nodes with the same label) p ranges from 0.01 to 0.1, while the inter-connection probability
(connection probability between nodes with different labels) q ranges from 0.001 to 0.01.
The imbalanced graph consists of six labels [150, 150, 50, 50, 50, 50], resulting in |I| = 6 and
|V | = N = 500. Finally, since this study is based on semi-supervised learning, the prior-
informed ratio (the proportion of nodes whose labels are known) r ranges from 0.01 to 0.1.

The objective function corresponding to the experiment utilizing only edges (2-cliques)
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Figure 3: Relative proportion of maximal (orange) and augmented maximal (teal) cliques
in the PPM model with 5 labels (500 nodes per label) depending on the values of p (intra-
connection probability) and q (inter-connection probability). Black bars represent the vari-
ability (standard deviation) in node participation frequencies during training.

in the graph is expressed as

JK2 =
∑

(n1,n2)∈K2

∑
(m1,m2)=θ∈I2

Cθp
n1
m1
pn2
m2

where the experimental results obtained using JK2 are denoted as PI (stands for pairwise
interactions). In addition to PI, we define experimental results obtained using the objective
(3) (and solving (4)) as ALL (stands for all cliques), those obtained using (5) as MAX (stands
for maximal cliques), and those obtained using (7) as Aug-MAX (stands for augmented
maximal cliques). We initialize the node probability distribution for these four strategies
using RW in Section 2.3. Furthermore, we report the accuracy gain of ALL, MAX, and
Aug-MAX to PI and perform a comparative analysis of their accuracy performances. The
accuracy gain is defined as y/x−1 where x and y represent the accuracy obtained by PI and
the higher-order strategies (ALL, MAX, and Aug-MAX), respectively.

For the real dataset experiments, we employ a transductive semi-supervised learning
setting following the methodology in [39,41,50]. In the citation datasets Cora, Citeseer, and
Pubmed, we adopt the widely used Planetoid split, where 20 nodes per class are labeled for
training, 500 nodes are used for validation, and 1,000 nodes are used for testing, while the
remaining nodes are unlabeled but included in the graph during training. In contrast, for
the Coauthor-Physics dataset, we follow a different splitting strategy: approximately 60%
of the nodes are used as the candidate pool for training, from which 20 nodes per class
are sampled, 20% of the nodes are reserved for validation with up to 100 nodes per class,
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and the remaining 20% of the nodes are used for testing. We evaluate our method on four
benchmark datasets under these settings. The Cora dataset consists of 2,708 nodes, 5,429
undirected citation edges, and 7 labels. The Citeseer dataset contains 3,327 nodes, 4,732
edges, and 6 labels. The Pubmed dataset comprises 19,717 nodes, 44,338 edges, and 3 labels.
In all three citation datasets, nodes represent papers and edges represent undirected citation
relationships. The Coauthor-Physics dataset contains 34,493 nodes and 495,924 edges, where
nodes represent authors, edges denote coauthorship, and labels correspond to each author’s
research field.

We use a learning rate of 0.1, run 20 epochs, and set the default value of the weight
hyperparameter Wk to 1 in the objective function (7) for all experiments. The Adam op-
timizer [51] is employed for optimization. The implementation algorithm is available at
https://github.com/kooeunho/HOI-aug-max.

5 Results

In this section, we evaluate the node classification performance of the higher-order network-
based objective function on balanced data (Section 5.1) and imbalanced data (Section 5.2)
generated using PPM. In both sections, we compare the performance of the proposed objec-
tive function applied to 2-clique (edge) experiments (PI) and those incorporating higher-order
cliques (ALL, MAX, and Aug-MAX). Additionally, we assess the accuracy gain of higher-order
clique experiments relative to PI. Furthermore, we present and discuss experiments where
higher-order clique structures are combined with various GNN-based semi-supervised node
classification methods, leading to additional performance improvements (Section 5.3). In
Section 5.4, we provide an extended evaluation, and in Section 5.5, we summarize and dis-
cuss the results.

5.1 Balanced Experiment

We conducted experiments by varying the intra-class connection probability p within the
range [0.01, 0.1], the inter-class connection probability q within [0.001, 0.01], and the prior
information ratio r within [0.01, 0.1]. For each combination of p, q, r, we measured the
mean and standard deviation of node participation frequency in training, as well as the
mean number of cliques used for training. These measurements were performed across all
four experimental settings: PI, ALL, MAX, and Aug-MAX. The mean node participation
frequencies across all p, q, r combinations were 7.49, 9.67, 6.54, and 7.07 for PI, ALL, MAX,
and Aug-MAX, respectively. The corresponding standard deviations were 2.68, 4.54, 2.35,
and 2.19, while the mean number of cliques used for training was 1873, 2231, 1477, and 1609,
respectively. Figure 4 illustrates a comparative analysis of each strategy’s performance and
the accuracy gain of higher-order clique strategies over PI.

Among the four strategies, MAX exhibits the lowest mean node participation frequency
and the smallest mean number of cliques used (even compared to PI), indicating the highest
computational efficiency. Compared to MAX, Aug-MAX shows slightly lower efficiency but
yields performance gains by reducing the standard deviation of node participation frequency,
thereby flattening its distribution across the network. Notably, Aug-MAX reduces the total
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Balanced Experiment

Figure 4: Experimental results in the balanced setting [100, 100, 100, 100, 100]. The first
row shows the clique distribution over the range of p and q (intra- and inter-class connection
probabilities in PPM, respectively). The second row presents the classification accuracy for
PI (black), ALL (navy), MAX (orange), and Aug-MAX (teal) across different ranges of p, q,
and r (prior-informed ratio). The third row illustrates the accuracy gains of higher-order
clique-based approaches compared to PI over the same parameter ranges.

number of training cliques by 28% compared to ALL, while maintaining an average accuracy
gain of 0.20% across all p, q, r configurations.

Additionally, the performance gains of higher-order clique approaches (ALL, MAX, and
Aug-MAX) over PI become more pronounced in challenging scenarios, i.e., when the intra-
class connection probability was low, the inter-class connection probability was high, and the
prior information ratio was low (Figure 4). This can be attributed to the ability of higher-
order structures to capture richer information beyond simple one-hop (edge) relationships,
such as multi-node co-occurrence patterns and highly connected substructures.

5.2 Imbalanced Experiment

The imbalanced experiment is conducted under the same p, q, r range settings as the balanced
experiment. The mean node participation frequencies across all p, q, r combinations are 8.05,
10.96, 7.02, and 7.66 for PI, ALL, MAX, and Aug-MAX, respectively. The corresponding
standard deviations are 3.56, 6.07, 3.23, and 2.99, while the mean number of cliques used
for training is 2012, 2491, 1545, and 1704, respectively. Figure 5 illustrates a comparative
analysis of each strategy’s performance and the accuracy gain of higher-order clique strategies
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Imbalanced Experiment

Figure 5: Experimental results in the imbalanced setting [150, 150, 50, 50, 50, 50]. The first
row shows the clique distribution over the range of p and q (intra- and inter-class connection
probabilities in PPM, respectively). The second row presents the classification accuracy for
PI (black), ALL (navy), MAX (orange), and Aug-MAX (teal) across different ranges of p, q,
and r (prior-informed ratio). The third row illustrates the accuracy gains of higher-order
clique-based approaches compared to PI over the same parameter ranges.

(ALL, MAX, and Aug-MAX) over PI.
The key characteristics observed in the balanced experiment are also present in the imbal-

anced experiment. That is, compared to MAX, Aug-MAX shows a slight increase in the mean
node participation frequency and the total number of cliques used but achieves improved
accuracy by reducing the standard deviation of node participation frequency. Furthermore,
Aug-MAX reduces the total number of training cliques by 32% compared to ALL, while
achieving an average accuracy gain of 1.42% across all p, q, r configurations. Additionally,
similar to the balanced experiment, the performance gains of higher-order clique approaches
(ALL, MAX, and Aug-MAX) over PI remain more pronounced in challenging scenarios.

5.3 Incorporating the proposed strategy into GNN

This section examines a strategy that enhances performance by integrating the proposed
objective function with existing GNN-based node classification methods. Traditional GNN-
based approaches learn node embedding representations through various techniques, such as
adjusting the exploration and return variables of random walks [38] or employing attention
mechanisms [41]. After obtaining node embeddings, these methods typically use a simple
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Cora Citeseer Pubmed Coauthor-Physics

Clique distributions in benchmark datasets

Figure 6: Clique distributions in the Cora, Citeseer, Pubmed, and Coauthor-Physics
datasets. Navy, orange, and teal correspond to ALL, MAX, and Aug-MAX, respectively.

neural network structure or a linear transformation to derive the final probability distribution
of node labels.

To effectively combine the higher-order connectivity-based objective function with GNN
methods, we conduct experiments using the ALL, MAX, and Aug-MAX strategies, initial-
izing them with the node label probability distributions produced by the baseline GNN
models. Many GNN-based models do not directly incorporate higher-order structures dur-
ing training. By leveraging this integration, the GNN architecture can incorporate various
higher-order structures obtained from the Aug-MAX within the network based on the learned
node probability distributions, ultimately leading to improved classification performance.

In the real dataset experiments, we evaluate models that integrate GNNs with higher or-
der clique-based strategies using the Cora, Citeseer, Pubmed, and Coauthor-Physics datasets.
Figure 6 illustrates the clique distribution and the number of cliques used with respect to
ALL, MAX, and Aug-MAX in each dataset. Although budgets of 1000, 1000, and 3000 are al-
located for Cora, Citeseer, and Pubmed, respectively, the number of cliques actually added
to the maximal clique set to construct the Aug-MAX set is only 356, 111, and 191. This
indicates that the number of candidate cliques capable of reducing the variance in node par-
ticipation frequency is limited to these amounts. For Coauthor-Physics, the budget is set
to 10,000, and the number of added cliques reaches this full amount, which is considered a
sufficient augmentation as the rate of variance reduction diminishes significantly.

In the Cora experiments, the mean and standard deviation of node participation frequen-
cies are 3.90, 6.05, 3.12, and 3.39, and 5.23, 10.43, 4.75, and 4.70 for PI, ALL, MAX, and
Aug-MAX, respectively. For Citeseer, these values are 2.74, 4.17, 2.37, and 2.44, and 3.38,
9.31, 3.18, and 3.16, respectively. For Pubmed, they are 4.50, 7.36, 4.31, and 4.33, and 7.43,
23.49, 7.95, and 7.94, respectively. For Coauthor-Physics, 14.38, 303.02, 10.23, and 11.20,
and 15.57, 935.46, 21.85, and 21.61, respectively.

This study addresses the transductive learning-based semi-supervised node classification
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problem, using GAT [41], GCN [40], SGC [42], Planetoid [39], MGNN [45], SDMG [46], and
CSSE [47] as benchmark algorithms. These models generate embedding vectors using the
node feature dimensions of the four datasets, which are 1433 (Cora), 3703 (Citeseer), 500
(Pubmed), and 8415 (Coauthor Physics), respectively. As a result of the experimental setup
in Section 4, the prior information for training and validation consists of 640 nodes for Cora,
629 for Citeseer, 560 for Pubmed, and 600 for Coauthor-Physics. We summarize the results
in Table 2.

GNN Model Method Cora Citeseer Pubmed Coauthor-Physics

GAT Raw 0.830 ± 0.004 0.725 ± 0.005 0.790 ± 0.003 0.9255 ± 0.0016

ALL 0.849 ± 0.004 0.729 ± 0.005 0.801 ± 0.003 0.9273 ± 0.0016

MAX 0.844 ± 0.004 0.729 ± 0.005 0.801 ± 0.003 0.9266 ± 0.0015

Aug-MAX 0.851 ± 0.004 0.729 ± 0.005 0.801 ± 0.003 0.9275 ± 0.0015

GCN Raw 0.815 ± 0.005 0.703 ± 0.006 0.790 ± 0.003 0.9238 ± 0.0017

ALL 0.831 ± 0.005 0.716 ± 0.006 0.790 ± 0.003 0.9256 ± 0.0018

MAX 0.831 ± 0.005 0.715 ± 0.006 0.790 ± 0.003 0.9250 ± 0.0016

Aug-MAX 0.840 ± 0.005 0.726 ± 0.006 0.791 ± 0.003 0.9259 ± 0.0017

SGC Raw 0.810 ± 0.003 0.719 ± 0.004 0.789 ± 0.002 0.9067 ± 0.0019

ALL 0.848 ± 0.003 0.719 ± 0.004 0.789 ± 0.002 0.9084 ± 0.0020

MAX 0.846 ± 0.003 0.719 ± 0.004 0.787 ± 0.002 0.9081 ± 0.0019

Aug-MAX 0.849 ± 0.003 0.720 ± 0.004 0.790 ± 0.002 0.9087 ± 0.0019

Planetoid Raw 0.757 ± 0.006 0.647 ± 0.007 0.772 ± 0.004 0.9238 ± 0.0019

ALL 0.771 ± 0.006 0.658 ± 0.007 0.773 ± 0.004 0.9259 ± 0.0018

MAX 0.769 ± 0.006 0.658 ± 0.007 0.773 ± 0.004 0.9253 ± 0.0017

Aug-MAX 0.772 ± 0.006 0.660 ± 0.007 0.774 ± 0.004 0.9262 ± 0.0017

MGNN Raw 0.818 ± 0.005 0.705 ± 0.006 0.788 ± 0.003 0.9189 ± 0.0021

ALL 0.824 ± 0.005 0.711 ± 0.006 0.792 ± 0.003 0.9213 ± 0.0020

MAX 0.822 ± 0.005 0.709 ± 0.006 0.791 ± 0.003 0.9210 ± 0.0019

Aug-MAX 0.825 ± 0.005 0.712 ± 0.006 0.793 ± 0.003 0.9218 ± 0.0020

SDMG Raw 0.821 ± 0.004 0.708 ± 0.005 0.785 ± 0.004 0.9211 ± 0.0018

ALL 0.827 ± 0.004 0.714 ± 0.005 0.790 ± 0.004 0.9233 ± 0.0018

MAX 0.825 ± 0.004 0.712 ± 0.005 0.789 ± 0.004 0.9228 ± 0.0017

Aug-MAX 0.828 ± 0.004 0.715 ± 0.005 0.791 ± 0.004 0.9237 ± 0.0017

CSSE Raw 0.819 ± 0.005 0.706 ± 0.006 0.791 ± 0.003 0.9245 ± 0.0017

ALL 0.825 ± 0.005 0.712 ± 0.006 0.795 ± 0.003 0.9264 ± 0.0016

MAX 0.823 ± 0.005 0.710 ± 0.006 0.794 ± 0.003 0.9259 ± 0.0016

Aug-MAX 0.826 ± 0.005 0.713 ± 0.006 0.796 ± 0.003 0.9268 ± 0.0016

Table 2: Summary of accuracy results for benchmark datasets.
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5.4 Extended Evaluation

5.4.1 Weight Parameter Wk

The objective function of our study includes the weight hyperparameter Wk for each clique
order k. While the main experiments in this paper employ a default strategy of uniform
weighting (Wk = 1), which assigns equal importance to cliques of all orders, we additionally
analyze the impact of a linear weighting strategy (that is, Wk = k) that gives greater impor-
tance to higher-order cliques. On the synthetic datasets, our experimental results indicate
that the linear weighting strategy yields a modest performance gain overall compared to
the default uniform weighting setting. On average, we observe an accuracy improvement
of 0.241% in the balanced experiments and 0.947% in the imbalanced experiments. More
specifically, in the balanced experimental setting, the linear weighting leads to performance
improvements of 0.182%, 0.226%, and 0.315% for the ALL, MAX, and Aug-MAX strategies,
respectively. This trend is more pronounced in the imbalanced setting, where performance
gains of 0.784%, 1.094%, and 0.963% are achieved for the respective strategies. This suggests
that assigning higher weights to higher-order interactions can contribute to more effective
learning of the network’s complex structural information, particularly in scenarios with im-
balanced class distributions. The performance advantage of the linearWk setting also extends
to the GNN experiments, as presented in Table 3. Averaged across the GNN models, the

Cora Citeseer Pubmed Coauthor-Physics

GAT 0.08 0.09 0.08 0.03

GCN 0.08 0.10 0.08 0.03

SGC 0.12 0.14 0.13 0.03

Planetoid 0.13 0.15 0.13 0.03

MGNN 0.09 0.10 0.09 0.03

SDMG 0.09 0.10 0.09 0.03

CSSE 0.09 0.10 0.09 0.02

Table 3: Average accuracy gains (%) of ALL, MAX, and Aug-MAX under the linear weighting
scheme (Wk = k) compared to the uniform weighting scheme (Wk = 1) across benchmark
datasets.

accuracy gains for the ALL strategy are 0.09%, 0.10%, 0.09%, and 0.03% on the Cora, Cite-
Seer, PubMed, and Coauthor-Physics datasets, respectively. The corresponding gains are
0.07%, 0.08%, 0.07%, and 0.02% for the MAX, and 0.12%, 0.13%, 0.11%, and 0.03% for the
Aug-MAX strategy.

5.4.2 Runtime Evaluation

To evaluate computational efficiency, the following training times are measured on the
Coauthor-Physics dataset, with the augmentation budget set to 10,000. The baseline models
require 55s (GAT), 15s (GCN), 35s (SGC), 20s (Planetoid), 45s (MGNN), 210s (SDMG),
and 45s (CSSE). Using the initialized probability distribution from these GNNs, the training
times for our higher-order strategies are approximately 130s for ALL, 10s forMAX, and 30s for
Aug-MAX. It is important to note that this comparison excludes the one-time pre-processing
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cost, which consists of generating all cliques and maximal cliques (715s), constructing the
Aug-MAX set (an additional 185s), and pre-computing the higher-order coefficients (Cθ in
eqn. (7)) (45s). All experiments are conducted on a single GPU deep learning server con-
figured with two Intel Xeon Gold 6426Y 16-core CPUs, 256GB of DDR5 RAM, and two
NVIDIA L4 24GB GPUs. The software environment is built on the latest version of CentOS
Linux, utilizing Python, PyTorch, and the NVIDIA CUDA Toolkit.

5.4.3 Friedman Test

We conduct a non-parametric statistical analysis across four real-world datasets (Cora, Cite-
seer, Pubmed, and Coauthor-Physics). We employ the Friedman test, a standard procedure
for comparing multiple algorithms over multiple datasets. The performance of the 28 total
models (Raw, ALL, MAX, and Aug-MAX corresponding to each of the 7 GNNs) is ranked
separately for each of the four datasets. The null hypothesis (H0) is that all models perform
equally, and thus their average ranks are statistically indistinguishable. Our analysis yields
a Friedman chi-squared statistic of 658.32, with a corresponding p-value of 1.8× 10−121. As
this p-value is substantially lower than the standard significance level (α = 0.05), we strongly
reject the null hypothesis. Subsequently, we proceed with the Nemenyi post-hoc test. The
Nemenyi test compares the average ranks of the models against a critical difference. If the
difference in average ranks between two models is greater than the critical difference, their
performance is considered to be statistically different (in our experiment with 28 models and
4 datasets, the critical difference at a significance level of α = 0.05 is 6.88). Table 4 presents
the average ranks for the top 15 models. It is observed that for every GNN architecture, the

Rank GNN Model Method Average Rank

1 GAT Aug-MAX 4.1

2 SGC Aug-MAX 6.3

3 GAT ALL 7

4 CSSE Aug-MAX 7.2

5 GCN Aug-MAX 7.5

6 GAT MAX 8.8

7 SDMG Aug-MAX 9.1

8 SGC ALL 9.3

9 CSSE ALL 9.9

10 GCN ALL 10.1

11 GCN MAX 10.5

12 MGNN Aug-MAX 10.8

13 SGC MAX 11

14 CSSE MAX 11.2

Rank GNN Model Method Average Rank

15 SDMG ALL 11.4

16 MGNN ALL 11.5

17 SDMG MAX 12

18 MGNN MAX 12.3

19 Planetoid Aug-MAX 13.9

20 GAT Raw 14.1

21 Planetoid ALL 14.4

22 CSSE Raw 15.8

23 Planetoid MAX 15.9

24 SDMG Raw 16.3

25 GCN Raw 17.5

26 MGNN Raw 18

27 SGC Raw 18.8

28 Planetoid Raw 24.5

Table 4: Average ranks of all models based on the Friedman test. At significance level
α = 0.05, the critical difference for the Nemenyi post-hoc test is 6.88.

Aug-MAX method consistently achieves a better rank than its corresponding Raw GNN base-
line. This demonstrates the universal effectiveness of our proposed strategy. For instance,
GAT-Aug-MAX (average rank 4.1) is statistically superior to GCN-Raw (average rank 17.5),
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as the rank difference of 13.4 is greater than the Critical Difference of 6.88. Additionally, the
Nemenyi test identifies a top-performing group including GAT-Aug-MAX, SGC-Aug-MAX,
GAT-ALL, CSSE-Aug-MAX, and GCN-Aug-MAX, within which the performance differences
are not statistically significant. Nevetheless, the performance of this group is statistically
superior to that of the lower-ranked models.

5.5 Summary and Discussion

In this paper, we evaluate the proposed Aug-MAX strategy on balanced and imbalanced
networks generated by PPM, as well as on real citation networks. The key findings and
discussions derived from these experiments are as follows.

First, both Aug-MAX and MAX strategies utilize most of the higher-order cliques em-
ployed in ALL. More specifically, for k ≥ 2, the ratio |Qk|/|Kk| (which is less than or equal
to 1) approaches 1 as k increases. This trend is observed in the upper sections of Figures
4, 5 and 6. This study employs objective functions (3), (5) and (7) that incorporate both
lower-order and higher-order clique structures. We observe that, for large k, Qk and Kk

become nearly identical, implying that the three higher-order network-based learning strate-
gies, ALL, MAX, and Aug-MAX, achieve nearly the same level of learning on higher-order
cliques, which encapsulate hierarchical and collective properties of the network. As a result,
despite the imbalance in the number of lower-order cliques used in training, their overall
performance remains comparable.

Second, using all cliques in the network for training, which was used in the previous
study [23], is the most intuitive approach in clique-based network analysis, but it may not
be an optimal choice. In both synthetic networks and real networks used in this study, the
standard deviation of node participation frequency in ALL is significantly higher than that in
MAX and Aug-MAX. Specifically, in the real datasets Cora, Citeseer, Pubmed, and Coauthor-
Physics, the standard deviation of ALL is 2.22, 2.95, 2.96, and 43.29 times higher than that
of Aug-MAX, respectively. This suggests that the imbalance in node usage frequency caused
by using all cliques results in biased representation learning and unbalanced information
propagation, leading to lower predictive performance compared to Aug-MAX. This serves
as the primary motivation for introducing Aug-MAX, which offers a systematic approach to
selecting cliques for higher-order representation learning. Third, although PPM does not
perfectly replicate real datasets, it allows us to infer the types and numbers of cliques used
for training in networks with a large number of nodes or edges. According to the expected
clique count formulation of ALL and MAX in the PPM synthetic graphs derived in Appendix
A, as the number of nodes increases or the node connection probability grows, the proportion

of higher-order cliques in the total set of cliques increases, while the ratio |Q|
|K| =

∑M
i=2 |Qk|∑M
i=2 |Kk|

decreases (Figure 7). Notably, as the network size grows, in MAX and Aug-MAX strategies,
only a small fraction of small-sized cliques participate in training.

Fourth, integrating Aug-MAX with 7 GNN models results in average accuracy gains of
2.14%, 1.28%, 0.56%, and 0.25% over the raw models for Cora, Citeseer, Pubmed, and
Coauthor-Physics, respectively. The objective function (7) is designed to encourage elements
of higher-order cliques to share similar probability distributions, based on the assumption
that densely interconnected nodes tend to have the same label. However, when the pro-
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Clique Distribution

Figure 7: Clique size distributions in the PPM model with varying number of nodes and
intra-class connection probability p. The upper panels illustrate the proportion of clique
sizes for ALL (navy) and MAX (orange) under the setting p = 0.15, q = 0.015, and [N,N,N ],
where the number of nodes is N for each of the three labels. The lower panels show the clique
size proportions for ALL and MAX as p increases under the fixed setting [1000, 1000, 1000],
with q set to p/10. Red bars indicate the ratio of the number of MAX cliques to the total
number of ALL cliques.

portion of inter-cluster connections is high so that a large number of higher-order cliques
consist of nodes from different labels, the proposed objective function struggles to achieve
high performance. In the Cora, Citeseer, and Pubmed datasets, the proportion of inter-
cluster cliques among 3-cliques and higher is 16.4%, 18.8%, and 22.6%, respectively, with
Citeseer and Pubmed exhibiting particularly high inter-cluster proportions. While the Aug-
MAX strategy notably reduces the standard deviation in node participation frequency during
training, a high inter-cluster ratio may pose a constraint on achieving additional performance
gains.

Fifth, the Aug-MAX strategy incorporates some non-maximal cliques into MAX while
significantly reducing the total number of cliques used for training compared to ALL. PPM
simulations indicate that as the network size increases, the proportion of MAX to ALL further
decreases. However, the computational complexity of ALL andMAX remains O(

∑M
k=2 |Kk|kl)

and O(
∑M

k=2 |Qk|kl), respectively, where l is the number of labels. Despite the reduction in
the total number of cliques, the kl term remains unchanged. Consequently, when the number
of labels is large and the size of cliques grows, computational complexity remains a significant
challenge. Additionally, since the polynomial coefficient Cθ in (3), (5) and (7) is computed
differently for each k, it is difficult to perform computations on cliques of different sizes using
a single method. This inherent complexity prevents a straightforward parallelization of the
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proposed algorithm. Addressing computational complexity and parallelization challenges is
essential for enhancing the generalization and efficiency of the higher-order polyhedral-based
objective function employed in this study, highlighting it as a key avenue for future research.

Sixth, while Aug-MAX effectively reduces redundancy compared to the ALL strategy, it
does not fully resolve the imbalance in node participation. Certain nodes may still appear
excessively across multiple maximal cliques due to overlap, leading to biased training. A
promising future direction would be to integrate overlapping maximal cliques into unified
structures, potentially through techniques such as link prediction, thereby reducing redun-
dancy more fundamentally and improving computational efficiency. At the same time, we
acknowledge that our framework relies on the enumeration of higher-order cliques, and for
very large-scale graphs, this task is NP-hard and may become a computational bottleneck.
This limitation is not unique to our method but is a common challenge faced by all clique-
based, higher-order analysis methodologies.

6 Conclusion

Utilizing higher-order cliques to capture complex relational patterns between nodes or col-
lective node patterns in network analysis is a natural approach. Previous studies [23] have
proposed a higher-order polyhedral-based objective function for the semi-supervised node
classification task, where each node has a probability distribution, and training aims to make
the distributions within each clique more similar across the network. However, training on
all cliques increases computational complexity and raises the risk of overfitting. Addition-
ally, nodes with high connectivity tend to appear in multiple cliques, leading to excessive
participation in training and causing an over-representation issue.

To address these challenges, we propose the augmented maximal clique strategy (Aug-
MAX). This strategy selectively incorporates non-maximal cliques into the maximal clique
set, significantly reducing the total number of cliques used for training while also minimizing
the standard deviation of node participation frequency compared to strategies that use all
cliques. To validate the proposed strategy, we conduct experiments on balanced and imbal-
anced networks generated by PPM and further evaluate its effectiveness by integrating it
with GNN-based models on real citation datasets.

Experimental results demonstrate that Aug-MAX significantly reduces the number of
cliques used during training compared to approaches that utilize all cliques (ALL), indicating
a substantially lower computational complexity for Aug-MAX. Additionally, by lowering the
standard deviation of node participation frequency compared to ALL and MAX, it mitigates
biased representation learning and improves classification accuracy.

Despite the efficiency and accuracy of the proposed strategy, the current algorithm faces
limitations in parallelization due to the distinct training mechanisms required for cliques of
varying sizes. Additionally, in networks with a high proportion of structurally diverse nodes,
particularly those involving numerous higher-order cliques with mixed labels, computational
complexity can become a concern. Overcoming these challenges remains an important di-
rection for future research.
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A Derivation of the expected number of maximal cliques

We derive explicit formulas for the expected number of all cliques and maximal cliques
in the PPM model, considering arbitrary node counts across labels and arbitrary intra-
and inter connection probabilities, denoted by p and q, respectively. Let the label in-
dex be I = {1, 2, ..., l}, and the number of nodes with label i be Ni for each i ∈ I, so
that N =

∑l
i=1Ni. Each k ∈ N will represent the size of a clique. Let π(k) denote

the set of partitions of k. We list the partition of k in increasing order. For example,
π(4) = {(1, 1, 1, 1), (1, 1, 2), (1, 3), (2, 2), (4)}, thus |π(4)| = 5. Each η ∈ π(k) represents the
label composition in a k-clique. For example, η = (1, 1, 2) tells us that the 4-clique under
consideration has 3 distinct labels assigned to its 4 nodes, where two nodes have the same
label. Let |η| denote the number of entries in η (i.e., the number of distinct labels in a clique),

such that η = (η1, ..., η|η|). Let η+ =
∑|η|

i=1 ηi, and define η! = η1!η2! . . . η|η|!. For example, if
η = (2, 2, 3), then |η| = 3, η+ = 7 and η! = 2!2!3! = 24. For L,M ∈ N, let S(L,M) be the
set containing all possible permutations of M distinct numbers selected from {1, 2, ..., L}.
For example, S(4, 2) = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)}. Let S(L,M) = ∅ if L < M .

Proposition 1. For each k ≥ 2, let E[Kk] and E[Qk] represent the expected number of the
k-cliques, and of the maximal k-cliques in the PPM, respectively. Then it holds:

E[Kk] =
∑
η∈π(k)

P (η) · 1

η!

∑
(j1,...,j|η|)=ξ∈S(l,|η|)

A(η, ξ), (8)

E[Qk]

=
∑
η∈π(k)

P (η)

η!

∑
(j1,...,j|η|)=ξ∈S(l,|η|)

A(η, ξ)B1(η, ξ)B2(η, ξ), (9)

where (assuming
(
n
m

)
= 0 if n < m)

P (η) = p
∑|η|

m=1 (
ηm
2 )q(

η+
2 )−

∑|η|
m=1 (

ηm
2 ),

A(η, ξ) =

|η|∏
m=1

(
Njm

ηm

)
,

B1(η, ξ) =

|η|∏
m=1

(1− pηmqη+−ηm)Njm−ηm ,

B2(η, ξ) =
∏

i∈I\{j1,...,j|ξ|}

(1− qη+)Ni .

Hence, E[K] =
∑N

k=2 E[Kk] and E[Q] =
∑N

k=2 E[Qk] represent the expected number of all
cliques, and of the maximal cliques, respectively, in the PPM.

Proof. It suffices to interpret the terms P,A,B1, and B2. Given η ∈ π(k) (thus k = η+),
P (η) represents the probability of the existence of a k-clique in the graph whose node label
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counting is given by η. This is because the total number of edges in the k-clique connecting
nodes with the same label is

∑|η|
m=1

(
ηm
2

)
, and hence, the number of edges connecting nodes

with different labels is
(
k
2

)
−

∑|η|
m=1

(
ηm
2

)
. Meanwhile,

1

η!

∑
(j1,...,j|η|)=ξ∈S(l,|η|)

A(η, ξ) represents

the total number of the set of k nodes whose label counting is given by η. This yields (8).
To derive (9), let us first consider the simpler case where the probability of any two nodes

being connected is p. The expected number of k-cliques is then
(
N
k

)
p(

k
2). Now observe that

a k-clique is a maximal clique if and only if there exists no outside node that connects to all
of the k nodes in the clique. This observation implies that the expected number of maximal

k-clique in this simple case is
(
N
k

)
p(

k
2)(1− pk)N−k. By generalizing the term (1− pk)N−k for

two parameters (p, q), we can derive B1, B2. Given a clique σ with η its node label counts,
we divide the label index I into two parts: labels used to label the nodes in σ (denoted as I1)
and labels not used (denoted as I2). Then Bj(η, ξ), j = 1, 2, represents the probability that
any node outside σ labeled in Ij does not connect to all of the nodes in σ. This completes
the proof.
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