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Abstract. A cornerstone in convex analysis is the crucial relationship be-

tween functions and their convex conjugate via the Fenchel-Young inequal-

ity. In this dual variable setting, the maximal monotonicity of the contact

set
{

(x, y)
∣∣ f(x) + f∗(y) = 〈x, y〉

}
is due to the involution f∗∗ = f holding

for convex lower-semicontinuous functions defined on any Hilbert space.

We investigate the validity of the cyclic version of involution and maximal

monotonicity for multiple (more than two) convex functions. As a result, we

show that when the underlying space is the real line, cyclical involutivity

and maximal monotonicity induced by multi-conjugate convex functions

continue to hold as for the dual variable case. On the other hand, when

the underlying space is multidimensional, we show that the corresponding

properties do not hold in general unless a further regularity assumption

is imposed. We provide detailed examples that illustrate the significant

differences between dual- and multi-conjugate convex functions, as well as

between uni- and multi-dimensional underlying spaces.
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Definitions and Assumptions

· Unless specified otherwise, all functions have their values in R ∪ {+∞}, i.e.,

functions do not assume the value −∞ (only exception is in Lemma 2.1). And

all functions are assumed to be (or verified to be) proper, that is, f 6≡ +∞
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but there exists x ∈ H such that f(x) ∈ R, unless it is stated as f ≡ +∞.

· H represents a real Hilbert space equipped with an inner product 〈 , 〉 on

which all functions in the paper are defined. |x| =
√
〈x, x〉 denotes the norm.

· 〈x, y〉 represents the dot product if H = Rn, and is also denoted by x · y.

· A(H) denotes the set of proper, lower-semicontinuous and convex functions

on H.

· For N ∈ N and Γ ⊆ HN , S(Γ) :=
{∑N

i=1 xi ∈ H
∣∣ (x1, x2, ..., xN) ∈ Γ

}
.

· For N ∈ N, ∆ = ∆HN := {(x, ..., x) ∈ HN | x ∈ H} denotes the diagonal

subspace of HN .

· x = (x1, ..., xN) denotes an arbitrary element in the product space HN .

· c = cN : HN → R denotes the “cost function”; c(x) :=
∑

1≤i<j≤N〈xi, xj〉.
· For proper functions {fi}i=1,...,N satisfying

∑N
i=1 fi(xi) ≥ c(x) for all x ∈ HN ,

we let Γ = Γ{fi}Ni=1
:=
{
x ∈ HN

∣∣ ∑N
i=1 fi(xi) = c(x)

}
.

· For proper functions f1, ..., fN on H,
(⊕N

i=1 fi
)
(x) :=

∑N
i=1 fi(xi).

· � denotes the infimal convolution; (f�g)(x) := infy∈H
(
f(y) + g(x− y)

)
.

· q denotes the quadratic function; q(x) := 1
2
|x|2.

· ef := f�q denotes the Moreau envelope of f .

· For f ∈ A(H), Proxf denotes the proximal mapping ([8, Definition 12.23]).

· Id : H → H denotes the identity mapping; Id(x) = x.

· For A ⊆ H, intA denotes the interior of A.

· For a function f , dom f := {x ∈ H | f(x) ∈ R} denotes the domain of f .

· For λ > 0, a function f is called λ-strongly convex if f − λq is convex.

· For Γ ⊆ HN and i0 ∈ {1, ..., N}, let Γi0 : H → 2H denote the set-valued

mapping; Γi0(xi0) :=
{∑

i 6=i0 xi
∣∣ (x1, ..., xi0 , ..., xN) ∈ Γ

}
.

· (Essential smoothness [32]) f ∈ A(H) is called essentially smooth if it satisfies

the following three conditions for C = int(dom f):

(a) C is not empty;

(b) f is differentiable thoughout C;

(c) limi→∞ |∇f(xi)| = +∞ whenever x1, x2, ... is a sequence in C converging

to a boundary point x of C.

· (c-cyclical monotonicity [5]) Let n,N ∈ N\{1}. The subset Γ of HN is said to

be c-cyclically monotone of order n, n-c-monotone for short, if for all n tuples

(x1
1, . . . , x

1
N), . . . , (xn1 , . . . , x

n
N) in Γ and every N permutations σ1, . . . , σN in Sn,
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the following holds:

(0.1)
n∑
j=1

c(x
σ1(j)
1 , . . . , x

σN (j)
N ) ≤

n∑
j=1

c(xj1, . . . , x
j
N).

Γ is said to be c-cyclically monotone if it is n-c-monotone for every n ∈ N\{1},
and Γ is said to be c-monotone if it is 2-c-monotone. Finally, Γ is said to be

maximally n-c-monotone if it has no proper n-c-monotone extension.

1. Introduction and our contribution

Over the last few decades, the theory and applications of duality in convex

analysis and monotone operator theory have advanced significantly ([8, 34]),

the study of dual variables x, y ∈ H, a function f , and its convex conjugate

(1.1) f ∗(y) := sup
x∈H
〈x, y〉 − f(x)

which are linked by the Fenchel-Young inequality (see [8, Proposition 13.15])

(1.2) f(x) + f ∗(y) ≥ 〈x, y〉, x, y ∈ H.

We refer to [2–4, 9–11] for recent treatment of duality in optimization and

convex analysis. Studies showed that if f, g are convex conjugate to each other,

i.e., if f ∗ = g and g∗ = f , then the following contact set

Γ = {(x, y) ∈ H2 | f(x) + g(y) = 〈x, y〉}

= {(x, y) ∈ H2 | y ∈ ∂f(x)}

= {(x, y) ∈ H2 | x ∈ ∂g(y)}

is maximally monotone (Rockafellar [33]), which property turns out to be, by

Minty’s theorem (see [8, Theorem 21.1]), equivalent to

(1.3) S(Γ) = H

that is, S(Γ) is not a proper subset of H. Note that if Γ ⊆ H×H is monotone,

i.e.,

〈x− y, u− v〉 ≥ 0 for any (x, u) ∈ Γ, (y, v) ∈ Γ,
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then Γ ∩ (∆⊥ + p) is either empty or a singleton for every p ∈ ∆ (see [5,

Corollary 2.4]), where ∆ is the diagonal subspace of H × H. Thus (1.3) is a

maximality assertion, saying there is no “hole” in the monotone set Γ.

These results established by Minty, Rockafellar, Fenchel, Moreau, and others

have laid the groundwork for modern theory of nonlinear monotone operators

[14, 35, 36].

Recently, S. Bartz, H.H. Bauschke, H.M. Phan, and X. Wang [5] provided

a significant extension of the convex analysis theory into the multivariate,

or multi-marginal (i.e., variables more than two), situation, stating that “a

comprehensive multi-marginal monotonicity and convex analysis theory is still

missing.” We denote x = (x1, ..., xN) ∈ HN and define cN : HN → R by

(1.4) c(x) = cN(x) :=
∑

1≤i<j≤N

〈xi, xj〉.

We may simply denote by c. An analogous statement of the bi-conjugacy —

f ∗ = g and g∗ = f — in the multivariate setting can now be given as follows.

Definition 1.1 (c-conjugate tuple [5]). For each 1 ≤ i ≤ N , let fi : H →
R∪{+∞} be a proper function, i.e., not entirely +∞. We say that (f1, . . . , fN)

is a c-conjugate tuple if for each 1 ≤ i0 ≤ N and xi0 ∈ H, we have

fi0(xi0) =
(⊕
i 6=i0

fi

)c
(xi0) := sup

i 6=i0, xi∈H
c(x1, ..., xi0 , ..., xN)−

∑
i 6=i0

fi(xi).

Now we focus on the following theorem, which is a culmination of the results

in [5] (see Theorems 2.5 and 4.3 in [5]), significantly extending the theory of

maximal monotone operators induced by several convex functions.

Theorem 1.2 ([5]). For 1 ≤ i ≤ N , suppose fi ∈ A(H) satisfy

N∑
i=1

fi(xi) ≥ c(x) for all x ∈ HN .

Let Γ = Γ{fi}Ni=1
. The following assertions are equivalent:

(i) There exist 1 ≤ i0 ≤ N such that Γi0 is maximally monotone;

(ii) There exist 1 ≤ i0 ≤ N such that Γi0 = ∂fi0;

(iii) Γi = ∂fi for each 1 ≤ i ≤ N ;

(iv) Proxf1 + · · ·+ ProxfN = Id;
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(v) ef∗1 + · · ·+ ef∗N = q;

(vi) Γ + ∆⊥ = HN ;

(vii) S(Γ) = H.

In this case, (f1, . . . , fN) is a c-conjugate tuple, and Γ determines (f1, . . . , fN)

uniquely up to an additive constant tuple (ρ1, . . . , ρN) such that
∑N

i=1 ρi = 0.

Here (iv) represents the partition of the identity into a sum of firmly nonex-

pansive mappings, and (v) represents Moreau’s decomposition of the quadratic

function into envelopes in the multivariate settings. In addition, [5] shows that

Γ is maximally c-monotone and, consequently, maximally c-cyclically mono-

tone if any of the assertions (i)–(vii) hold.

It is natural to ask whether the cyclical conjugacy of (f1, ..., fN) conversely

yields the assertions as well. As a result, [5] addresses the following question:

Question 1. For any proper c-conjugate tuple {fi}Ni=1, is Γ = Γ{fi}Ni=1
maximal

in the sense of (1.3) (so that the statements (i)–(vii) hold)?

According to [5], this question is still open to the best of their knowledge.

The question appears to be quite interesting, particularly because it is well

known to be affirmative when N = 2 by the work of Rockafellar and Minty.

In this regard, the following partial result is given in [5, Theorem 4.6].

Theorem 1.3 ([5]). Let N = 3, n ∈ N and g, h ∈ A(Rn). Suppose that f =

(g⊕h)c and that f is essentially smooth. Let Γ = Γ{f,g,h}. Then assertions (i)–

(vii) in Theorem 1.2 hold (and therefore Γ is maximally c-monotone).

While Theorem 1.3 gives the first and affirmative answer to Question 1, it

appears to be restricted in the following ways: The value of N must be 3, and

one of the c-conjugate convex functions must be smooth. In this regard, our

first result addresses the problem of relaxing N to be arbitrary as follows.

Theorem 1.4. Let n,N ∈ N, N ≥ 2 and f1, ..., fN ∈ A(Rn). Suppose that

f1 = (
⊕N

i=2 fi)
c and that f1 is essentially smooth. Let Γ = Γ{f1,...,fN}. Then

assertions (i)–(vii) in Theorem 1.2 hold true.

However, this result is not yet entirely satisfactory because the smoothness

assumption must be imposed on one of the c-conjugate functions, which is not
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necessary when N = 2. Can the theorem be proved in full generality, i.e., for

any c-conjugate convex functions that only belong in A(Rn)?

Our next result shows that it is indeed affirmative if n = 1., i.e., if H = R.

Theorem 1.5. Let N ≥ 2 and assume that f1, ..., fN ∈ A(R) are c-conjugate.

Let Γ = Γ{f1,...,fN}. Then assertions (i)–(vii) in Theorem 1.2 hold true.

While working on these findings, the author realizes that Question 1 is in

fact closely related to the following notion of cyclical involutivity, which, to

the best of the author’s knowledge, has not been introduced or investigated.

As a result, we are led to provide the following definition.

Definition 1.6 (Cyclical involutivity). Let N ∈ N, N ≥ 2, c = cN . We shall

say that a subset of functions Ω ⊆ A(H) is N-cyclically involutive if for any

f1, f2, ..., fN ∈ Ω that satisfies

(1.5) fi(xi) =
(⊕

j 6=i

fj

)c
(xi) for every i = 2, ..., N,

then (f1, . . . , fN) is a c-conjugate tuple, that is, f1 also satisfies

(1.6) f1(x1) =
(⊕
j 6=1

fj

)c
(x1).

Ω is called cyclically involutive if it is N-cyclically involutive for every N ≥ 2.

Indeed, this definition is inspired by the following cornerstone statement by

Fenchel and Moreau (see [8, Theorem 13.37])

(1.7) f ∗∗ = f for every f ∈ A(H),

which can be rephrased as “A(H) is 2-cyclically involutive” for any Hilbert

space H. It is natural to wonder whether A(H) is N -cyclically involutive for

each N ≥ 3 as well. Our next result shows that it is also affirmative if H = R.

Theorem 1.7. A(R) is cyclically involutive.

See the proof of Theorem 3.7, in which we prove Theorems 1.5 and 1.7

simultaneously using an induction on N , demonstrating the close relationship

between cyclical involutivity and maximal monotonicity.

Now for H = Rn, we readily see that Theorems 1.2, 1.4 combine to imply:
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Corollary 1.8. The class of essentially smooth functions in A(Rn) is cyclically

involutive.

Is A(Rn) itself cyclically involutive as well? Somewhat surprisingly, it turns

out not to be true in general, as the following counterexample indicates.

Proposition 1.9. There exists f, g, h ∈ A(R2) such that f = (g ⊕ h)c, g =

(h⊕ f)c, but h 6= (f ⊕ g)c.

This proposition makes Question 1 obscure. Nevertheless, we can still hope

that, if f, g, h are assumed to be c-conjugate, Γ{f,g,h} might satisfy (1.3). This

sounds plausible in view of Theorem 1.4 where only one of the c-conjugate

functions needs to be essentially smooth, which appears to be a pretty mild,

and, seemingly redundant assumption when compared to the case N = 2.

This hope, however, is dashed by the following counterexample.

Proposition 1.10. Let λ > 0, and u = (1, 0) ∈ R2, v = (1
2
,
√

3
2

) ∈ R2. There

exists a c-conjugate triple f, g, h ∈ A(R2) for which Γ = Γ{f,g,h} satisfies

S(Γ) = R2 \ int Hλ

where Hλ is the convex hull of its six vertices ±2λu, ±2λv, and ±2λ(v − u).

Furthermore, Γ is not maximally c-monotone.

This implies that the regularity assumption in Theorem 1.4 is not redundant.

It is worth noting that [5] leaves the open question of whether every contact

set Γ generated by the c-conjugate tuple (f1, . . . , fN) is maximally c-monotone.

The proposition shows that the answer is negative unless H = R, in which case

Theorem 1.5 provides an affirmative answer. More detailed statement of the

proposition and related examples can be found in Section 4.

In summary, we provide a fairly complete answer to Question 1 by demon-

strating the significant difference between the cases N = 2 and N ≥ 3, and

also, between H = R and H = Rn. While Question 1 holds true for N = 2 and

A(H) is 2-cyclically involutive as shown by Fenchel, Moreau, Minty and Rock-

afellar, we show both statements fail in general when N ≥ 3. Nevertheless,

Theorems 1.5, 1.7 show that the results are still affirmative in full generality

for any N ≥ 3 if H = R. Furthermore, Theorems 1.4, 1.8 show that the results

are also affirmative within the class of essentially smooth convex functions
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when H = Rn. Finally, we believe that identifying other significant subsets of

A(H) that are cyclically involutive and understanding their relationship with

maximal monotonicity is an interesting question for future research.

1.1. Connection with theory of multi-marginal optimal transport.

Let (X1, µ1), . . . , (XN , µN) be Borel probability spaces, and X := X1 × · · · ×
XN . Denote by Π(X) the set of all Borel probability measures π on X whose

marginals are the µi’s [37, 39]. Given a cost function c : X → R, the optimal

transport problem refers to the following optimization problem:

(1.8) Pc := inf
π∈Π(X)

∫
X

c(x)dπ(x).

To distinguish it from the two-marginal case, the problem is commonly referred

to as multi-marginal optimal transport problem when N ≥ 3. In this problem,

the optimal transport cost Pc, as well as the geometry and structure of optimal

transport plans – the solutions to (1.8) – are sought. It is well known that the

problem (1.8) is attained, i.e., the OT plans exist, under suitable assumptions

on the cost and marginals.

Because (1.8) is an infinite-dimensional linear programming problem, it has

a dual problem whose formulation turns out to have the following form:

(1.9) Dc := sup

fi ∈ L1(µi),∑
1≤i≤N fi(xi) ≤ c(x)

∑
1≤i≤N

∫
Xi

fi(xi)dµi(xi).

Kellerer’s [19] generalization of the Kantorovich duality states that, under mild

assumptions on the marginals µ1, ..., µN and cost function c, it holds

(1.10) Pc = Dc.

This has the important implication that every optimal transport π solving

(1.8) is concentrated on the contact set

(1.11) Γ =

{
x ∈ X

∣∣∣∣ ∑
1≤i≤N

fi(xi) = c(x)

}
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where (f1, . . . , fN) is a solution to the dual problem (1.9), which is also at-

tained under suitable assumptions. This provides a crucial information for

investigating the geometry of optimal transport plans.

The interaction between the optimal transport and its dual problems is what

makes the theory surprisingly powerful for many applications in fields such as

analysis, geometry, PDEs, probability, statistics, economics, data sciences, and

many researchers have helped to advance the field [16, 18, 25, 30, 31, 37, 39].

Regarding the geometry of optimal transport for N = 2, arguably one of the

most well-known and widely applied result is the Brenier’s theorem [12]: given

marginals µ1, µ2 ∈ P2(Rn) and the cost function c(x1, x2) = |x1 − x2|2, there

exists a convex function ϕ such that for any solution π to (1.8), it holds

(1.12) y ∈ ∂ϕ(x) π−a.e. (x, y), and moreover, y = ∇ϕ(x) if µ1 has density.

Because the geometry of the subdifferential ∂ϕ is well understood by studies in

convex analysis, Brenier’s theorem could yield important further results. Like-

wise, a better understanding of multi-conjugate convex analysis should also

have a significant impact on the theory of multi-marginal optimal transport,

their geometry, and applications. This is one of the motivations of this paper.

Recent advances in the theory of multi-marginal optimal transport and its

geometrical structures have been rapid and fruitful, yielding numerous new

research directions and open problems [1, 7, 15, 17, 20–22, 24, 26, 28, 29]. In

light of two-marginal optimal transport theory, Brenier’s theorem and their

consequences, it appears clear that understanding the geometry of the contact

set (1.11) is crucial, much of which falls within the scope of the multi-conjugate

convex analysis. In this regard, the author hopes that this paper will contribute

to a better understanding of the geometry of various multi-marginal optimal

transport problems.

1.2. Organization of the paper. This paper is organized as follows. In Sec-

tion 2, we prove Theorem 1.4. In Section 3, we prove Theorems 1.5 and 1.7.

In Section 4, we explain Proposition 1.10 and provide additional examples to

demonstrate the difference between H = R and H = Rn. Finally, in Section 5,

we revisit cyclical involutivity and maximal monotonicity in the N = 3 case

in the context of duality, as well as provide details for Proposition 1.9.
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2. Extension of Theorem 1.3: Proof of Theorem 1.4

We will need the following lemma whose proof is given in [8, Proposition

14.19] for the case N = 1. Extension for arbitrary N ∈ N appears to be useful.

Lemma 2.1. For g, f1, f2, ..., fN ∈ A(H), we have the following identity

(2.1)

sup
xi∈dom fi
i=1,...,N

(
g(x+x1 + ...+xN)−

N∑
i=1

fi(xi)

)
=

(
g∗−

N∑
i=1

f ∗i

)∗
(x) for all x ∈ H,

where g∗−
∑N

i=1 f
∗
i : H → [−∞,+∞] is defined as (note −∞ can be assumed)

(
g∗ −

N∑
i=1

f ∗i

)
(y) :=


(
g∗ −

∑N
i=1 f

∗
i

)
(y) if y ∈ dom g∗,

+∞ if y /∈ dom g∗.

Proof. Recall S(x) := x1 + · · ·+ xN . We can proceed as follows:(
g∗ −

N∑
i=1

f ∗i

)∗
(x) = sup

y∈dom g∗
〈x, y〉 −

(
g∗ −

N∑
i=1

f ∗i

)
(y)

= sup
y∈dom g∗

〈x, y〉 − g∗(y) +
N∑
i=1

sup
xi∈dom fi

〈y, xi〉 − fi(xi)

= sup
y∈dom g∗

〈x, y〉 − g∗(y) + sup
xi∈dom fi
i=1,...,N

〈y, S(x)〉 −
N∑
i=1

fi(xi)

= sup
xi∈dom fi
i=1,...,N

sup
y∈dom g∗

〈y, x+ S(x)〉 − g∗(y)−
N∑
i=1

fi(xi)

= sup
xi∈dom fi
i=1,...,N

g(x+ S(x))−
N∑
i=1

fi(xi).

This proves the lemma. �

Our proof of Theorem 1.4 will closely follow the proof presented in [5],

utilizing Lemma 2.1 along with the following fact given in [38].

[38, Corollary 2.3]. Let f : Rn → R∪{∞} be proper and lower-semicontinuous.

If f ∗ is essentially smooth, then f is convex.
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Proof of Theorem 1.4. Recalling f1 = (⊕Ni=2fi)
c, we proceed

(f1 + q)(x1) = sup
x2,...,xN∈Rn

c(x) + q(x1)−
N∑
i=2

fi(xi)

= sup
x2,...,xN

x2 · (x1 + x3 + ...+ xN)− f2(x2) +
∑

1≤j<k≤N
j 6=2,k 6=2

xj · xk + q(x1)−
N∑
i=3

fi(xi)

= sup
x3,...,xN

f ∗2 (x1 + x3 + ...+ xN) + q(x1 + x3 + ...+ xN)−
N∑
i=3

(fi + q)(xi)

=

(
(f ∗2 + q)∗ −

N∑
i=3

(fi + q)∗
)∗

(x1)

=

(
ef2 −

N∑
i=3

ef∗i

)∗
(x1) =

(
q −

N∑
i=2

ef∗i

)∗
(x1)

where the last two equalities are due to Lemma 2.1 and Moreau’s decompo-

sition ((v)) for N = 2. Now since f1 + q is essentially smooth, [38, Corollary

2.3] implies q −
∑N

i=2 ef∗k is convex. And ef∗k , which is a Moreau envelope of a

function in A(Rn), is continuous in Rn. Consequently,

ef∗1 = (f1 + q)∗ = (q −
N∑
i=2

ef∗i )∗∗ = q −
N∑
i=2

ef∗i ,

that is,
∑N

i=1 ef∗i = q, which is the Moreau decomposition ((v)). �

3. One-dimensional domain: Proof of Theorems 1.5 and 1.7

We begin with a lemma about strong convexity and how it is inherited.

Lemma 3.1. Let f, g, h be proper functions on a Hilbert space H, satisfying

f(x) = sup
y∈dom g

h(x+ y)− g(y).

If h is lower-semicontinuous and λ-strongly convex, then so is f .



12 TONGSEOK LIM

Proof. Let k = h− λq, which belongs to A(H), thus k = k∗∗. We compute

f(x) = sup
y∈dom g

h(x+ y)− g(y)

= sup
y∈dom g

sup
z∈dom k∗

λq(x+ y) + 〈x+ y, z〉 − k∗(z)− g(y)

= λq(x) + sup
z∈dom k∗

{
〈x, z〉 − k∗(z) + sup

y∈dom g
{〈y, λx+ z〉 − (g − λq)(y)}

}
= λq(x) + sup

z∈dom k∗
〈x, z〉 − k∗(z) + (g − λq)∗(λx+ z)

=: λq(x) + ξ(x).

Observe ξ is convex lower-semicontinuous as a supremum of such functions. �

Let ∆ be the diagonal subspace of HN . The concept of a “directional convex

envelope” is clearly relevant to the study of c-conjugate convex functions. We

introduce the following definition as we are not aware of it appearing elsewhere.

Definition 3.2 (∆-convex envelope). Let x = (x1, ..., xN) ∈ HN , S(x) =∑N
i=1 xi. Let f : HN → R ∪ {+∞} be proper, satisfying f(x) ≥ 〈S(x), y〉 + b

for some y ∈ H, b ∈ R. Then g is called the ∆- convex envelope of f if g is the

largest convex lower-semicontinuous function on H satisfying f(x) ≥ g(S(x)).

Lemma 3.3. Let f satisfy the condition in Definition 3.2. Then g is the ∆-

convex envelope of f if and only if g∗(y) = supx〈S(x), y〉 − f(x).

Proof. Let h be any element in A(H). The following equivalence

f(x) ≥ h(S(x)) for every x ∈ HN

⇐⇒ f(x) ≥ 〈S(x), y〉 − h∗(y) for every x ∈ HN , y ∈ H

⇐⇒ h∗(y) ≥ sup
x
〈S(x), y〉 − f(x) for every y ∈ H

yields the lemma, since maximality of g corresponds to minimality of g∗. �

Definition 3.4. For proper functions f, g, h : H → R ∪ {+∞}, we say that f

and g are h-conjugate if the following holds:

(3.1) f(x) = sup
y∈dom g

h(x+ y)− g(y), g(y) = sup
x∈dom f

h(x+ y)− f(x).
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Proposition 3.5. Assume that f, g, h ∈ A(R) and that f, g are h-conjugate.

Assume further that f and h are continuous, and that h is λ-strongly convex

for some λ > 0. Then h is the ∆-convex envelope of f ⊕ g.

Proof. By Lemma 3.1, f and g are λ- stongly convex. In particular,
⋃
x∈R ∂f(x) =⋃

y∈R ∂g(y) = R. Firstly, we claim that the following set I is dense in R:

I = {s ∈ R | s = x+ y such that ∂f(x) ∩ ∂g(y) 6= ∅, and(3.2)

either f is differentiable at x or g is differentiable at y}.

Let us prove the claim later. Let H denote the ∆-convex envelope of f ⊕ g.

Then H ≥ h since f(x) + g(y) ≥ h(x + y) by (3.1). The proposition asserts

H = h. To prove this, we claim that it is sufficient to prove the following

tightness assertion: For any x0, y0 ∈ R such that ∂f(x0) ∩ ∂g(y0) 6= ∅ and

either f is differentiable at x0 or g is differentiable at y0, we have

f(x0) + g(y0) = h(x0 + y0).(3.3)

The sufficiency is because (3.3) implies H = h on I, and thus for any s ∈ R,

by the first claim, there exists a sequence sn in I such that lim sn = s, and

H(s) ≤ lim inf H(sn) = lim inf h(sn) = h(s)

as desired, thanks to the continuity of h.

Now to verify (3.3), by translation, we may assume without loss of generality

that x0 = y0 = 0. Moreover we may assume that 0 ∈ ∂f(0)∩∂g(0). To see why

this can be assumed, let a ∈ ∂f(0)∩∂g(0). Consider f̃(x) = f(x)−〈a, x〉−f(0),

g̃(y) = g(y) − 〈a, y〉 − g(0), and h̃(z) = h(z) − 〈a, z〉 − f(0) − g(0). Then

f and g are h-conjugate if and only if f̃ and g̃ are h̃-conjugate. And since

min f̃ = f̃(0) = 0 and min g̃ = g̃(0) = 0, (3.3) holds if and only if h̃(0) = 0.

Our discussion so far indicates it is sufficient to prove the claim (3.3) under the

assumption x0 = y0 = 0, f, g are h-conjugate, f(0) = min f = g(0) = min g =

0, and either f or g is differentiable at 0; and the goal is to prove h(0) = 0.

Now to derive a contradiction, suppose h(0) < 0, so that m = minh < 0.

Assume f is differentiable at 0 (the proof will be the same in the case g is

differentiable at 0, by switching the role of f and g). LetK = {x | h(x) ≤ m/2}.
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Since h is strongly convex, there exists δ > 0 such that

(3.4) x ∈ R \K and z ∈ ∂h(x) implies |z| ≥ δ.

By (3.1), given ε > 0, there exists yε such that −ε < h(yε)− g(yε) ≤ 0 = f(0).

Now f(x) ≥ h(x + yε) − g(yε) for all x and ∇f(0) = 0 imply that for all

sufficiently small ε, we must have yε ∈ K by (3.4). However, we then have

−ε < h(yε)− g(yε) ≤ h(yε) ≤ m/2,

a contradiction for small ε, proving the tightness assertion.

It remains to prove I is dense in R. For any s ∈ R, recall that there exists

x, y ∈ R such that s ∈ ∂f(x) ∩ ∂g(y). By translation and subtracting affine

functions as before, we may assume 0 ∈ ∂f(0)∩∂g(0). Then notice the desired

denseness will follow if we can show that for any r > 0, there exists x, y ∈ R
such that |x| < r, |y| < r, ∂f(x) ∩ ∂g(y) 6= ∅, and either f is differentiable at

x or g is differentiable at y.

Now to prove the claim, assume that neither f nor g is differentiable at

0, since otherwise there is nothing to prove. ∂f(0) is a compact interval, say

[a, b], since f is continuous. And W := ∂g((−r, r)) is an open interval since g

is strongly convex, thus g∗ is differentiable and ∂g∗ = (∂g)−1 is continuous.

Suppose b ∈ W . Then for any ε > 0, there exists x ∈ [0, ε) such that f is

differentiable at x and ∇f(x) ∈ [b, b + ε) since f is differentiable a.e.. Thus

∇f(x) ∈ W for small ε, and this implies ∇f(x) ∈ ∂g(y) for some y ∈ (−r, r),
proving the claim. Likewise, the claim holds in the case a ∈ W . Finally, if

{a, b}∩W = ∅, then W ⊆ (a, b), yielding that g is Lipschitz and differentiable

a.e. in (−r, r). Hence there exists y ∈ (−r, r) such that ∇g(y) ∈ ∂f(0). This

proves the desired denseness of I in R, hence the proposition. �

Remark 3.6. The above proof shows that Proposition 3.5 will continue to hold

for functions f, g, h defined on an arbitrary Hilbert space H if the corresponding

set I is dense in H given the mutual conjugacy (3.1).

Now we combine Theorems 1.5 and 1.7 into the following theorem.
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Theorem 3.7. Let H = R, and let c : RN → R be given by (1.4). Suppose

fi ∈ A(R), i = 1, ..., N , satisfy

(3.5) fi(xi) =
(⊕

j 6=i

fj

)c
(xi) for every i = 2, ..., N.

Then (f1, . . . , fN) is a c-conjugate tuple, that is, f1 also satisfies

(3.6) f1(x1) =
(⊕
j 6=1

fj

)c
(x1).

In this case, the contact set Γ = Γ{fi}Ni=1
satisfies (1.3), and thus, the assertions

(i)–(vii) in Theorem 1.2 hold true if H = R.

Proof. If N = 2, (3.6) is equivalent to the fact f ∗∗ = f by Fenchel and Moreau,

and (1.3) is also shown by Rockafellar and Minty. We will proceed by an in-

duction on N ≥ 3, thus when H = R, firstly we will extend these results (3.6),

(1.3) for N = 3. However, since the proof presented below will be valid for an

arbitrary Hilbert space H, in the sequel, we will denote H (rather than R) by

the underlying space, though we will eventually assume H = R.

Step 1: N = 3 case. To begin, let us write (f, g, h) = (f1, f2, f3). We have

f(x) + g(y) + h(z) ≥ 〈x, y〉+ 〈y, z〉+ 〈z, x〉,

hence

(3.7) ϕ(x, y) := f(x) + g(y)− 〈x, y〉 ≥ h∗(x+ y).

We will show h∗ is the ∆-convex envelope of ϕ. Notice (3.7) is equivalent to

(3.8) F (x) +G(y) ≥ H(x+ y)

where F = f + q, G = g + q, H = h∗ + q, and we recall q(s) = 1
2
|s|2. Observe

that the conjugacy assumption (3.5), which reads

f(x) = sup
y
{h∗(x+ y) + 〈x, y〉 − g(y)}, g(y) = sup

x
{h∗(x+ y) + 〈x, y〉 − f(x)}

implies that F and G are also H-conjugate (see (3.1)). We claim that H is

the ∆-convex envelope of F ⊕ G. Observe that this implies (3.6) for N = 3,

because if H is the ∆-convex envelope of F ⊕G, then h∗ must be the ∆-convex
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envelope of ϕ due to the equivalence between (3.7) and (3.8). But this precisely

means that h = (f ⊕ g)c by Lemma 3.3, as desired.

Then as argued in the proof of Proposition 3.5, it is sufficient to prove the

claim under the assumption that F and G are H-conjugate, F (0) = 0 = minF ,

G(0) = 0 = minG, and the goal is to show H(0) = 0 = minH.

To this end, for each R > 0, define

GR(y) = G(y) if |y| ≤ R, GR(y) = +∞ if |y| > R,

h∗R(x) = sup
|y|≤R
〈x, y〉 − h(y), HR = h∗R + q,

FR(x) = sup
y
{HR(x+ y)−GR(y)},

FH
R (y) = sup

x
{HR(x+ y)− FR(x)},

KR(y) = sup
x
{HR(x+ y)− F (x)}.

Assume R is large enough so that minGR = minG and h∗R is proper. We have

h∗R has Lipschitz constant at most R,(3.9)

FR is locally Lipschitz and monotone increasing to F as R→∞,(3.10)

FH
R converges pointwise to G.(3.11)

(3.10) is because HR and −GR monotonically increase in R, and FR is locally

Lipschitz because the supremum defining FR is taken over |y| ≤ R only. And

(3.11) is because GR ≥ FH
R ≥ KR, GR decreases to G, and KR increases to G

in R. Now since FR and FH
R are HR-conjugate, by Proposition 3.5, we have

(3.12) HR(x+ y) is the ∆-convex envelope of FR(x) + FH
R (y).

Recall that our goal is to show minH = minF + minG. It is clear that

minH ≤ minF + minG. To show the reverse, since HR ≤ H and minHR =

minFR + minFH
R by (3.12), and also GR ≥ FH

R ≥ KR, it is enough to show

(3.13) minFR ↗ minF and minKR ↗ minG as R→∞.

The fact that minF = F (0) = 0 and that F is of the form F = f + q implies

F ≥ q, thus F ∗ ≤ q. Since FR is increasing to F , F ∗R is decreasing in R and is

bounded below by F ∗. Let F∞ denote the limit of F ∗R. We claim F∞ = F ∗. To
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see this, first notice F∞ is convex as a limit of convex functions. Secondly we

have F∞ is continuous, because F ∗ ≤ F∞ ≤ F ∗R and FR is 1-strongly convex by

Lemma 3.1, thus q−F ∗R is continuous and convex. This implies F∞ is bounded

on every bounded subset of H, thus is locally Lipschitz, hence continuous on

H. This yields F∞ = (F∞)∗∗ = F ∗ as claimed. This implies in particular,

minF = −F ∗(0) = −F∞(0) = − lim
R→∞

F ∗R(0) = lim
R→∞

minFR.

Similarly, minKR ↗ minG. This proves minH = H(0) = 0, and thus (3.6).

Now to prove (1.3), fix any s ∈ H. By (1.3) holding for N = 2, there exists

z ∈ H such that h(z) + h∗(s − z) = 〈z, s − z〉. This yields z ∈ ∂h∗(s − z),

implying s ∈ ∂H(s− z). Since F,G,H are strongly convex, there exist unique

x, y, u ∈ H such that s ∈ ∂F (x) ∩ ∂G(y) ∩ ∂H(u). The fact that H is the ∆-

convex envelope of F⊕G now yields F (x)+G(y) = H(x+y) and s ∈ ∂H(x+y).

Then the uniqueness of u implies s− z = x+ y, that is, s = x+ y+ z. Finally,

F (x) +G(y) = H(x+ y)

⇐⇒ f(x) + g(y) = h∗(x+ y) + 〈x, y〉

⇐⇒ f(x) + g(y) = h∗(s− z) + 〈x, y〉

⇐⇒ f(x) + g(y) = 〈z, s− z〉 − h(z) + 〈x, y〉

⇐⇒ f(x) + g(y) + h(z) = 〈x, y〉+ 〈y, z〉+ 〈z, x〉.

This proves the maximality (1.3), hence the theorem for N = 3.

Step 2: induction on N . From now on, we extend the proof for N ≥ 4. We

proceed by an induction on N . Suppose the theorem holds for N − 1. Define

x̃ = (x3, ..., xN), S(x̃) =
N∑
i=3

xi, c(x̃) =
∑

3≤i<j≤N

〈xi, xj〉,

ψ(x̃) =
N∑
i=3

fi(xi)− c(x̃), ϕ(x1, x2) = f1(x1) + f2(x2)− 〈x1, x2〉,

g = (f1 ⊕ f2)c, i.e., g(y) = sup
x1,x2

{
〈y, x1 + x2〉 − ϕ(x1, x2)

}
.
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From the inequality
∑N

i=1 fi(xi) ≥ c(x), we have

ψ(x̃) ≥ g
(
S(x̃)

)
= sup

x1,x2

{
〈S(x̃), x1 + x2〉 − ϕ(x1, x2)

}
.(3.14)

Now comes the crux of the observation: (3.14), the induction hypothesis (on

the cyclical involutivity), and the conjugacy (3.5) (i.e., each of the f3, ..., fN is

the smallest convex function satisfying (3.14) given others) combine to imply

(f3, ..., fN , g
∗) are c(x̃, y)− conjugate, where c(x̃, y) = c(x̃) + 〈S(x̃), y〉.

In other words, g
(
S(x̃)

)
is the ∆-convex envelope of ψ(x̃), by Lemma 3.3.

This in turn implies f2 = (f1 ⊕ g)c due to the following calculation:

f2(x2) =
(⊕
j 6=2

fj

)c
(x2)

= sup
x1,x̃

{
〈x1, x2〉+ 〈x1 + x2, S(x̃)〉 − f1(x1)− ψ(x̃)

}
= sup

x1

{
〈x1, x2〉 − f1(x1) + sup

x̃
{〈x1 + x2, S(x̃)〉 − ψ(x̃)}

}
= sup

x1,y

{
〈x1, x2〉 − f1(x1) + 〈x1 + x2, y〉 − g(y)

}
= sup

x1,y

{
〈x2, x1 + y〉 − (f1(x1) + g(y)− 〈x1, y〉)

}
= (f1 ⊕ g)c(x2)

where the fourth equality is because g is the ∆-convex envelope of ψ. The

induction hypothesis (or the theorem we established for N = 3) now implies

f1 = (f2 ⊕ g)c =
(⊕
j 6=1

fj

)c
(x1)

where the second equality is by an analogous calculation given above. This

completes the proof of the cyclical involutivity (3.6).

Finally, we establish the maximality (1.3). Recall (3.14), that is

ψ(x̃) ≥ g(S(x̃)) ≥ 〈y, S(x̃)〉 − g∗(y) for every x3, ..., xN , y.

Fix any s ∈ H. By the conjugacy of (f3, ..., fN , g
∗) and the induction hypothesis

on the maximality, there exists x̃s = (x̃s3, ..., x̃
s
N) such that

(3.15) ψ(x̃s) = g(S(x̃s)) = 〈s− S(x̃s), S(x̃s)〉 − g∗(s− S(x̃s)).
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Similarly, the conjugacy of (f1, f2, g) yields

ϕ(x1, x2) ≥ g∗(x1 + x2) ≥ 〈z, x1 + x2〉 − g(z) for every x1, x2, z,

and for the same s, there exists xs1, x
s
2 ∈ H such that

(3.16) ϕ(xs1, x
s
2) = g∗(xs1 + xs2) = 〈s− xs1 − xs2, xs1 + xs2〉 − g(s− xs1 − xs2).

However, the pair u, v ∈ H that satisfies u + v = s and g(u) + g∗(v) = 〈u, v〉
is unique. Hence (3.15), (3.16) implies S(x̃s) = s − xs1 − xs2, or s =

∑N
i=1 x

s
i .

From this identity, by adding the identities (3.15), (3.16), we obtain

ϕ(xs1, x
s
2) + ψ(x̃s) = 〈S(x̃s), xs1 + xs2〉

⇐⇒ (xs1, ..., x
s
N) ∈ Γ =

{
x

∣∣∣∣ N∑
j=1

fj(xj) = c(x)

}
.

This completes the proof of the theorem. �

Remark 3.8. The proof shows that Theorem 3.7 holds for any Hilbert space

H and for all N ≥ 3 as soon as it holds for N = 3. However, the case

N = 3 necessitates the restriction H = R for the theorem to hold unless some

regularity assumption is imposed on the conjugate convex functions. In view of

Remark 3.6, this implies the set I is not dense in H in general when H is multi-

dimensional. In the following section, we provide examples for illustration.

4. Failure on multidimensional domain: Examples on the plane

Recall the notion of c-cyclical monotonicity. Let e1 = (1, 0), e2 = (0, 1)

denote the standard basis of R2. We now provide details for Proposition 1.10

in the following example.

Example 4.1. Let λ > 0, and u = (1, 0) ∈ R2, v = (1
2
,
√

3
2

) ∈ R2. There exists

a c-conjugate triple f, g, h ∈ A(R2) for which Γ = Γ{f,g,h} satisfies

(4.1) S(Γ) = R2 \ int Hλ

where Hλ is the convex hull of its six vertices ±2λu, ±2λv, and ±2λ(v − u).

Furthermore, Γ is not maximally c-monotone.
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An example of such a c-conjugate triple is as follows:

f(x) =

0 on I1 := {x = au | a ∈ [−λ, λ]},

∞ else,

g(y) =

0 on I2 := {y = bv | b ∈ [−λ, λ]},

∞ else,

h(z) = max
(
λ|u · z + λu · v|+ λv · z, λ|u · z − λu · v| − λv · z

)
.

Proof. Step 1: h = (f ⊕ g)c. We firstly show h = (f ⊕ g)c. This follows from

the following straightforward calculation:

(f ⊕ g)c(z) = sup
x,y∈R2

x · y + y · z + z · x− f(x)− g(y)

= sup
|a|≤λ,|b|≤λ

(au+ bv) · z + ab(u · v)

= sup
|b|≤λ

sup
|a|≤λ

a(u · z + b(u · v)) + b(v · z)

= sup
|b|≤λ

λ|u · z + b(u · v)|+ b(v · z)

= max
(
λ|u · z + λu · v|+ λv · z, λ|u · z − λu · v| − λv · z

)
where the last equality is because the function b 7→ λ|u · z + b(u · v)|+ b(v · z)

is convex and thus its maximum is attained at the boundary b = λ or b = −λ.

Step 2: geometry of h and h∗. We investigate the geometry of h and thereby

derive h∗. Recall u = e1, v = 1
2
e1 +

√
3

2
e2. Thus, for z = (z1, z2) ∈ R2,

h(z) = max
(
λ
∣∣z1 + 1

2
λ
∣∣+ 1

2
λz1 +

√
3

2
λz2, λ

∣∣z1 − 1
2
λ
∣∣− 1

2
λz1 −

√
3

2
λz2

)
.

The solution of the equation∣∣z1 + 1
2
λ
∣∣+ 1

2
z1 +

√
3

2
z2 =

∣∣z1 − 1
2
λ
∣∣− 1

2
z1 −

√
3

2
z2
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is given by

z2 = 1√
3

(∣∣z1 − 1
2
λ
∣∣− ∣∣z1 + 1

2
λ
∣∣− z1

)
=


−
√

3z1 if z1 ∈ [−1
2
λ, 1

2
λ],

− 1√
3
z1 − 1√

3
λ if z1 ∈ [1

2
λ,+∞),

− 1√
3
z1 + 1√

3
λ if z1 ∈ (−∞,−1

2
λ].

This, and the presence of the terms
∣∣z1 + 1

2
λ
∣∣ and

∣∣z1 − 1
2
λ
∣∣ imply that h is a

piecewise affine convex function on the following four closed convex regions

R1 = {z1 ≥ 1
2
λ} ∩ {z2 ≤ − 1√

3
z1 − 1√

3
λ},

R2 = {z1 ≤ −1
2
λ} ∩ {z2 ≥ − 1√

3
z1 + 1√

3
λ},

R3 = {z2 ≥ −
√

3z1} \ (intR1 ∪ intR2),

R4 = {z2 ≤ −
√

3z1} \ (intR1 ∪ intR2),

where intR denotes the interior of R, and h is defined on each region as

(4.2) h(z) =



1
2
λz1 −

√
3

2
λz2 − 1

2
λ2 in R1,

−1
2
λz1 +

√
3

2
λz2 − 1

2
λ2 in R2,

3
2
λz1 +

√
3

2
λz2 + 1

2
λ2 in R3,

−3
2
λz1 −

√
3

2
λz2 + 1

2
λ2 in R4.

See Figure 1. In particular, minh = h(0) = 1
2
λ2. Let w = v−u = −1

2
e1 +

√
3

2
e2,

and let Dλ ⊆ R2 denote the convex hull of its four vertices ±λw, ±λ(u + v).

Observe (4.2) readily implies that its convex conjugate is the following:

(4.3)

h∗(z∗) =

λ2(t− 1
2
) if z∗ = ±tλw + sλ(u+ v) for t ∈ [0, 1], s ∈ [t− 1, 1− t]

+∞ else, i.e., if z∗ /∈ Dλ.
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λ /2 
λ /2 

λ /2 

λ /2 

R 1 

R 2 

R 4 

R 3 

(a) h is piecewise affine and convex.

D λ 

λ w λ (u+v) 

λ (u+v) λ w 

(b) In Dλ, h∗ is constant along each line
segment parallel to the dashed line.

Figure 1. Geometry of h and h∗

Step 3: g = (h ⊕ f)c and f = (h ⊕ g)c. Now we show g = (h ⊕ f)c. By

symmetry, f = (h⊕ g)c will then follow verbatim and we omit. We compute

(h⊕ f)c(y) = sup
x,z∈R2

x · y + y · z + z · x− f(x)− h(z)

= sup
z∈R2

sup
a∈[−λ,λ]

a(y1 + z1) + y · z − h(z)

= sup
z∈R2

y · z −
(
h(z)− λ|z1 + y1|

)
= (ξy1)

∗(y)

where y = (y1, y2), z = (z1, z2) and ξy1(z) := h(z) − λ|z1 + y1|. We need to

compute (ξy1)
∗, the convex conjugate of ξy1 for each y1, and evaluate at y.

First, since the coefficient of z2 in (4.2) is within [−
√

3λ
2
,
√

3λ
2

], we readily get

(ξy1)
∗(y) = +∞ if |y2| >

√
3λ
2
.

As a result, we will assume y2 ∈ [−
√

3λ
2
,
√

3λ
2

] from now on. We claim that

(ξy1)
∗(y) = +∞ if y is not parallel to v. To see this, we will show that ξy1 is

constant on the half-infinite lines L1 := R1∩R3 and L2 := R2∩R4 respectively.
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L 1 
L 5 

L 3 L 6 

L 4 

L 2 

y 1 

Figure 2. ly ≤ ξy1 along each line segment Li, thus in R2

Notice the claim then follows from this constancy and the fact that v is per-

pendicular to the lines L1, L2. Now it is clear that ξy1 is constant on L1, since

for z ∈ L1, we have z2 = − 1√
3
z1− 1√

3
λ, yielding h(z) = λ

2
z1−

√
3λ
2
z2− λ2

2
= λz1.

Similarly, h(z) = −λz1 on L2, proving the claim.

The remaining case for calculating (ξy1)
∗(y) is when y is parallel to v, that

is, y2 =
√

3y1 and y1 ∈ [−λ
2
, λ

2
]. We need to show (ξy1)

∗(y) = 0, which will

follow if we can show that the function ly(z) := y · z satisfies ly ≤ ξy1 in R2

with the inequality being saturated at some point in R2. In fact, we claim

ly = ξy1 on L1 ∪ L2, and ly ≤ ξy1 on L3 ∪ L4 ∪ L5 ∪ L6, where

L3 = R1 ∩R4, L4 = R2 ∩R3, L5 = R3 ∩R4, L6 = {z | z1 = −y1}.

Notice that since ξy1 is piecewise affine, the claim implies ly ≤ ξy1 as desired.

To see ly = ξy1 on L1, since ly is constant on L1, it is enough to show

ly(−λw) = ξy1(−λw). But ξy1(−λw) = h(−λw)−λ|y1−λw1| = λ2

2
−λ(y1+ λ

2
) =

−λy1 = λ(1
2
,−
√

3
2

) · (y1,
√

3y1) = −λw · y, as desired. Similarly, ly = ξy1 on

L2. Then ly ≤ ξy1 on L4 is immediate from the fact that L4 is vertical, and

the coefficient of z2 in (4.2) is
√

3λ
2

which is no less than y2, meaning that ξy1
grows no slower than ly along L4. Similarly ly ≤ ξy1 on L3. Then ly ≤ ξy1 on L5

follows from the fact that ξy1 is concave on L5 with ly = ξy1 at the boundary
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points of L5, i.e., at λw and −λw. From this, the dominance ly ≤ ξy1 on L6 can

also be seen from the growth of h in z2 direction, along with the fact ly ≤ ξy1
at the point L5 ∩ L6 just established. This proves the conjugacy g = (h⊕ f)c.

Step 4: verification of Γ. We want to characterize Γ induced by the c-

conjugate triple (f, g, h). Recall that f(x) and g(y) are finite only for x =

au, y = bv with a, b ∈ [−λ, λ], so we assume this henceforth. The inequality

f(x) + g(y) + h(z) ≥ x · y + y · z + z · x

then becomes

(4.4) h(z) ≥ z · (x+ y) + x · y.

Notice this inequality can only become equality for (x, y) that satisfies:

(4.5) h∗(x+ y) = −x · y.

That is, only for those (x, y) satisfying (4.5) can there be z satisfying equality

in (4.4), i.e., (x, y, z) ∈ Γ. Thus we want to solve (4.5). Recall (4.3) that h∗(z∗)

is constant (and equal to λ2(t − 1
2
)) for z∗ = ±tλw + sλ(u + v), t ∈ [0, 1],

s ∈ [t − 1, 1 − t], where w = v − u. In view of (4.5), let us assume x + y =

tλ(v − u) + sλ(u + v). Notice this implies x = (s− t)λu, y = (s + t)λv, since

x, y are parallel to u, v respectively. In this case, (4.5) yields

λ2(t− 1
2
) = −1

2
λ2(s2 − t2)

⇐⇒ s2 = (t− 1)2

⇐⇒ s = t− 1 or 1− t.

In view of (4.3) and the definition of the region Dλ, this precisely means

(4.6) {x+ y | h∗(x+ y) = −x · y, x = au, y = bv, −λ ≤ a, b ≤ λ} = ∂Dλ

where ∂Dλ is the boundary of Dλ. Given (x, y) such that x+ y ∈ ∂Dλ, finding

Γx,y := {z | (x, y, z) ∈ Γ} yielding equality in (4.4) is now straightforward from

the description of h in (4.2). For example, for x = λu, y = λv, it is clear that

Γx,y is precisely R3, since the slope of h is x + y = λ(u + v) on R3. Similarly,

for x = −λu, y = λv, we find Γx,y = R2. For x = tλu, y = λv with t ∈ (−1, 1),
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Γx,y = R2 ∩R3 = L4. In this way, we can describe Γ completely as follows:

Γx,y =



R3 if x = λu, y = λv,

R2 ∩R3 if x = tλu, y = λv and t ∈ (−1, 1),

R2 if x = −λu, y = λv,

R2 ∩R4 if x = −λu, y = tλv and t ∈ (−1, 1),

R4 if x = −λu, y = −λv,

R4 ∩R1 if x = tλu, y = −λv and t ∈ (−1, 1),

R1 if x = λu, y = −λv,

R1 ∩R3 if x = λu, y = tλv and t ∈ (−1, 1).

(4.7)

Gathering x+y+Γx,y for every x+y ∈ ∂D, we conclude that S(Γ) is precisely

as described in (4.1).

Step 5: Γ is not maximally c-monotone. Note that (0, 0, 0) ∈ (R2)3 is not

in Γ. We will show that Γ̃ := Γ∪{(0, 0, 0)} is still c-monotone, thereby showing

that Γ is not maximally c-monotone. In view of Definition ?? and the fact that

Γ is c-monotone, it is enough to prove the following for any (x, y, z) ∈ Γ:

c(x, y, z) + c(0, 0, 0) ≥ c(0, y, z) + c(x, 0, 0),

c(x, y, z) + c(0, 0, 0) ≥ c(x, 0, z) + c(0, y, 0),

c(x, y, z) + c(0, 0, 0) ≥ c(x, y, 0) + c(0, 0, z).

That is, we need to show

z · (x+ y) ≥ 0, x · (y + z) ≥ 0, y · (z + x) ≥ 0 for any (x, y, z) ∈ Γ.(4.8)

In each case of (4.7), we can directly check (4.8). In the first case where x = λu,

y = λv and z ∈ R3, the inequality z · (x+ y) ≥ 0 is obvious from the direction

of u+v and the definition of R3. By observing that y+R3 has nonnegative first

components, the inequality x ·(y+z) ≥ 0 is easily seen. Likewise, y ·(z+x) ≥ 0

is checked. We can also easily check that other cases in (4.7) where Γx,y = R2,

Γx,y = R4, and Γx,y = R1 satisfy (4.8) as well. The remaining cases in (4.7)

then satisfy (4.8) through interpolation, verifying that Γ̃ is c-monotone. �
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Remark 4.2. The author conjectures that Γ̃ is also c-cyclically monotone, and

thus Γ is not maximally c-cyclically monotone either. However, verifying the

c-cyclically monotonicity of Γ̃ appears to be nontrivial (despite the fact that we

have a complete description of Γ!), and we leave it as an open question.

The oblique direction of u, v (i.e., 0 < u · v < 1), as well as finite-length

but nonzero support of f and g (i.e., 0 < λ < ∞), appear to be essential

in constructing a counterexample presented in Example 4.1. In the following

examples, we illustrate these observations.

Example 4.3 (Perpendicular u, v yields S(Γ) = R2.). Let u = e1, v = e2 and

λ ∈ [0,∞] in Example 4.1 (note that we allow λ = 0 or ∞), so that

f(x) =

0 on I1 = {x = au | a ∈ [−λ, λ]},

∞ else,

g(y) =

0 on I2 = {y = bv | b ∈ [−λ, λ]},

∞ else,

h(z) = (f ⊕ g)c(z)

= sup
a,b∈[−λ,λ]

(au+ bv) · z

=

λ(|z1|+ |z2|) if λ ∈ [0,∞),

0 if z = 0, ∞ else, if λ =∞.

(f, g, h) is a c-conjugate triple as easily verified. If λ = 0, then (0, 0, z) ∈ Γ

for any z ∈ R2, yielding S(Γ) = R2. If λ = ∞, then (au, bv, 0) ∈ Γ for any

a, b ∈ R, again yielding S(Γ) = R2. Thus we henceforth assume λ ∈ (0,∞).

We have

h∗(z∗) =

0 if z∗ = (z∗1 , z
∗
2), −λ ≤ z∗1 , z

∗
2 ≤ λ,

∞ else.

Then the pair of (x, y) ∈ I1 × I2 satisfying (4.5) is equal to I1 × I2, since

x · y = 0. Thus the sum set, i.e., the set of x+ y, becomes

(4.9) {x+ y | h∗(x+ y) = −x · y, x ∈ I1, y ∈ I2} =: D
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where D = I1 + I2 is the convex hull of its four vertices ±λ(u+ v),±λ(v− u).

Notice the difference between (4.6) in Step 4 of Example 4.1, where the sum

set is equal to the boundary of D, and not all of D.

Now for (x, y) with x + y ∈ intD, clearly Γx,y = {z | (x, y, z) ∈ Γ} = {0}.
For each (x, y) such that x + y ∈ ∂D, verifying Γx,y is again straightforward

from the definition of h. For example, it is easy to see that Γλu,λv = {z =

(z1, z2) ∈ R2 | z1 ≥ 0, z2 ≥ 0}, Γ−λu,λv = {z = (z1, z2) ∈ R2 | z1 ≤ 0, z2 ≥ 0},
and Γtλu,λv = {z = (z1, z2) ∈ R2 | z1 = 0, z2 ≥ 0} for any t ∈ (−1, 1), and so

on. Gathering x+ y+ Γx,y for every x+ y ∈ D, we verify S(Γ) = R2. We thus

conclude that the triple (f, g, h) does not provide a counterexample to Question

1 when u and v are perpendicular.

Example 4.4 (Infinite support of f, g with u · v 6= 0 yields h ≡ +∞.). Let

u, v be non-perpendicular unit vectors in R2, i.e., assume u · v ∈ (0, 1]. Define

f(x) =

0 on I1 = {x = au | a ∈ R},

∞ else,

g(y) =

0 on I2 = {y = bv | b ∈ R},

∞ else.

In this case, we claim that h := (f ⊕ g)c is not proper but h ≡ +∞. Because

of this, the triple (f, g, h) does not provide a counterexample to Question 1.

The claim is straightforward from the following calculation:

(f ⊕ g)c(z) = sup
x,y∈R2

x · y + y · z + z · x− f(x)− g(y)

= sup
a∈R,b∈R

(au+ bv) · z + ab(u · v)

≥ sup
a∈R

a(u+ v) · z + a2(u · v)

=∞

for any z, since u · v > 0.

5. Dual perspective of cyclical conjugation and maximality

In this section, we illustrate cyclical involutivity and maximal monotonicity

in the N = 3 case in the context of duality. For f, g, h ∈ A(H), we recall the
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following inequality

(5.1) f(x) + g(y) + h(z) ≥ 〈x, y〉+ 〈y, z〉+ 〈z, x〉, x, y, z ∈ H

is equivalent to

(5.2) F (x) +G(y) ≥ H(x+ y)

where F = f + q, G = g+ q, H = h∗ + q, which in turn yields the equivalence

f = (g ⊕ h)c and g = (h⊕ f)c(5.3)

⇐⇒ F (x) = sup
y∈H

H(x+ y)−G(y) and G(y) = sup
x∈H

H(x+ y)− F (x)

⇐⇒ F = (H∗ −G∗)∗ and G = (H∗ − F ∗)∗ by Lemma 2.1

⇐⇒ U = (W − V )∗∗ and V = (W − U)∗∗(5.4)

where U = F ∗, V = G∗, W = H∗. This naturally leads us to consider the

following class of convex functions (see [8, Propositions 12.30, 14.2])

A1(H) := {F ∈ A(H) | F is 1-strongly convex},

A∗1(H) := {U ∈ A(H) | U = F ∗ for some F ∈ A1(H)}

= {U ∈ A(H) | U = f�q for some f ∈ A(H)}

= {U ∈ A(H) | q − U is continuous and convex}.

We see that, given (5.3), the question of 3-cyclical involutivity, that is, whether

h is equal to (f ⊕ g)c or not, can be recast as the following dual problem:

Is W := h�q the smallest (pointwise in H) function in A∗1(H) satisfying (5.4)?

Note that W := U + V is obviously the smallest convex function satisfying

(5.4), but U + V may not belong to the class A∗1(H) in general. This makes

the question of finding the smallest W in A∗1(H) nontrivial. Indeed, we show

below how the cyclical involution can fail only under the assumption (5.3).

Now we turn to the maximality question (1.3) in the context of duality. As-

sume f, g, h ∈ A(H) satisfies (5.1). The equivalence between ((v)) and ((vii))

in Theorem 1.2 is then recast, via Moreau decomposition, as follows:

(5.5) Γ = Γ{f,g,h} satisfies (1.3) if and only if W = U + V.
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Now assume f, g ∈ A(H), and set h := (f⊕g)c. Observe that (5.5) then yields

the following equivalence:

(5.6) Γ = Γ{f,g,h} satisfies (1.3) if and only if U + V ∈ A∗1(H).

This is because if W := U + V is in A∗1(H), then W ∗ − q is convex, thus the

corresponding triple f := U∗−q, g := V ∗−q and h := (W ∗−q)∗ satisfies (1.3)

and c-conjugate, by the equivalence between ((v)) and ((vii)) in Theorem 1.2.

Let us explore the above discussion through the examples from the previous

section. In Example 4.1, the triple (f, g, h) is c-conjugate, which yields W =

h�q is indeed the smallest element inA∗1(H) satisfying (5.4). However, W (0) =

−minW ∗ > 0 = U(0) + V (0), causing the equation W = U + V to fail. We

deduce Γ does not satisfy (1.3), without having to precisely compute S(Γ).

On the other hand, in Example 4.3, we have

U(x) = (f + q)∗(x1, x2) =


1
2
|x1|2 for x1 ∈ [−λ, λ],

λx1 − 1
2
λ2 for x1 ≥ λ,

−λx1 − 1
2
λ2 for x1 ≤ −λ,

and V (x1, x2) = U(x2, x1). It is easy to see that U + V belongs to A∗1(H), and

hence by (5.6), we conclude that the triple (f, g, h) does satisfy (1.3).

Finally, we conclude this paper by detailing Proposition 1.9.

Example 5.1. We will construct f, g, h ∈ A(R2) such that f = (g ⊕ h)c,

g = (h⊕f)c, but h 6= (f⊕g)c. We denote x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

Let a ∨ b := max{a, b}. Recall {e1, e2} denote the standard basis of R2. Define

H1(x) = |x1| ∨ |x2|+ q(x),

G0(y) =

H1(y) if y = e1 or y = −e1,

+∞ else,

F1(x) = sup
y∈R2

H1(x+ y)−G0(y),

G1(y) = sup
x∈R2

H1(x+ y)− F1(x).
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Then F1, G1 are H1-conjugate. And by definition of F1, we have

F1(0) = minF1 = 0, and
∂F1

∂x2

(0) = 0,

that is, F1 is smooth at its minimum (origin) in the x2-direction. Next, notice

G1 = G0 at y = ±e1, and by symmetry of the construction, we have G1(0) =

minG1. We claim G1(0) > 0. This can be easily seen from the inequality

F1(x) ≥ H1(x)−G1(0) for all x ∈ R2,

and the fact that F1(0) = H1(0) = 0, and at the origin x = 0, F1 is smooth

in x2-direction but H1 is singular. This proves the claim. Let m := G1(0) > 0,

and redefine

H = H1 −m, F = F1, G = G1 −m,

so that we have

F (0) = minF = G(0) = minG = 0, H(0) = minH < 0, and(5.7)

F,G are H-conjugate.(5.8)

Now we define f, g, h ∈ A(R2) by f = F−q, g = G−q, and h = (H−q)∗. Then

as discussed before, (5.8) implies that f = (g⊕h)c and g = (h⊕f)c. We need to

show h 6= (f⊕g)c. To show this, rather than finding precise formulas for h and

(f⊕g)c, we derive a contradiction. Recall that the equality h = (f⊕g)c implies

h∗ + q is the largest 1-strongly convex lower-semicontinuous function among

all H ∈ A1(R2) satisfying (5.2). We claim that this is false with h = (H− q)∗.
Set H̃ := H ∨ 0. Notice that (5.7) then readily implies F,G are H̃-conjugate

as well. But H̃ is not 1-strongly convex yet. Note that for any K ∈ A(R2)

satisfying H ≤ K ≤ H̃, we have that F,G are K-conjugate. Hence the claim

will follow if we can find a 1-strongly convex function K satisfying:

(5.9) H ≤ K ≤ H̃, and H(0) < K(0).

But the definitions H(x) = |x1| ∨ |x2|+ q(x)−m and H̃ = H ∨ 0 readily imply

that for all sufficiently small ε > 0, the following function

Kε := H ∨ (q −m+ ε)

is a 1-strongly convex function satisfying (5.9). This yields h 6= (f ⊕ g)c.
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