
COMPLETENESS AND MAXIMAL MONOTONICITY OF
MULTI-CONJUGATE CONVEX FUNCTIONS ON THE LINE

TONGSEOK LIM

Abstract. A cornerstone in convex analysis is the crucial relationship

between functions and their convex conjugate via the Young-Fenchel in-

equality. In this bivariate case, the maximal monotonicity of the contact

set
{

(x, y)
∣∣ f(x)+f∗(y) = 〈x, y〉

}
is due to the involution f∗∗ = f holding

for convex lower-semicontinuous functions defined on a Hilbert space.

We introduce and investigate the validity of a generalized notion of in-

volution in multivariate convex analysis. As a result, we show that when

the underlying space is the real line, the generalized involution, or com-

pleteness of convex conjugation, holds true. This results in the maximality

of the contact set in RN induced by N multiconjugate convex functions.

We conclude with a remark whose resolution will allow the results to be

extended into multidimensional underlying spaces.
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1. Introduction

Let H represent a real Hilbert space equipped with an inner product 〈 , 〉
on which functions are defined. Let |x| =

√
〈x, x〉 denote the norm on H.

〈 , 〉 shall denote the usual dot product when H = Rn.

Over the last few decades, the theory and applications of (bivariate) convex

analysis and monotone operator theory have advanced significantly ([5, 28]),
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studying bivariate x, y ∈ H, a function f on H, and its convex conjugate

(1.1) f ∗(y) := sup
x∈H
〈x, y〉 − f(x)

which are linked by the celebrated Young-Fenchel inequality

(1.2) f(x) + f ∗(y) ≥ 〈x, y〉, x, y ∈ H.

In particular, it is well known that if f and g are convex conjugate to each

other, i.e., f ∗ = g and g∗ = f , then the following contact set

Γ = {(x, y) | f(x) + g(y) = 〈x, y〉}

= {(x, y) | y ∈ ∂f(x)}

= {(x, y) | x ∈ ∂g(y)}

is maximally monotone (Rockafellar [27]), which property turns out to be,

by Minty’s theorem (see [5, Theorem 21.1]), equivalent to

(1.3) S(Γ) = H

(and not a proper subset of H), where S(Γ) := {x+ y | (x, y) ∈ Γ}.
Note that if A ⊆ H×H is monotone, i.e.,

〈x− y, u− v〉 ≥ 0 for any (x, u) ∈ A, (y, v) ∈ A,

then A ∩ (∆⊥ + p) is either empty or a singleton for every p ∈ ∆, where

∆ = {(x, x) | x ∈ H} is the diagonal subspace of H × H. Thus (1.3) is

a maximality assertion, saying there is no “hole” in the monotone set Γ.

These results established by Minty, Rockafellar and many others now form

important foundation for modern theory of nonlinear monotone operators.

Recently, S. Bartz, H.H. Bauschke, H.M. Phan, and X. Wang [2] provided

a significant extension of the convex analysis theory into the multivariate,

or multi-marginal (i.e., variables more than two), situation, stating that “a

comprehensive multi-marginal monotonicity and convex analysis theory is

still missing.” We denote x = (x1, ..., xN) ∈ HN , and define c : HN → R by

(1.4) c(x) =
∑

1≤i<j≤N

〈xi, xj〉.
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An analogous statement of the bi-conjugacy — f ∗ = g and g∗ = f — in the

multivariate setting can be given as follows.

Definition 1.1 (c-conjugate tuple [2]). For each 1 ≤ i ≤ N , let fi : H →
]−∞,+∞] be a proper function, i.e., not entirely +∞. We say that (f1, . . . , fN)

is a c-conjugate tuple if for each 1 ≤ i0 ≤ N and xi0 ∈ H,

fi0(xi0) =
(⊕
i 6=i0

fi

)c
(xi0) := sup

i 6=i0, xi∈H
c(x1, ..., xi0 , ..., xN)−

∑
i 6=i0

fi(xi).

Now a culmination of the results in [2] (see Theorem 2.5 and 4.3 in [2]) is

the following theorem, where Ai0 : H → 2H is the set-valued mapping

Ai0(xi0) =

{∑
i 6=i0

xi

∣∣∣∣ (x1, ..., xi0 , ..., xN) ∈ Γ

}
,

and � denotes the infimal convolution: (f�g)(x) = infy∈H
(
f(y) + g(x− y)

)
.

Theorem 1.2 ([2]). For 1 ≤ i ≤ N , let fi : H → ]−∞,+∞] be convex, lower

semicontinuous, and proper, satisfying
N∑
i=1

fi(xi) ≥ c(x) for all x ∈ HN . Let

Γ =

{
x ∈ HN

∣∣∣∣ N∑
i=1

fi(xi) = c(x)

}
and S(Γ) =

{ N∑
i=1

xi

∣∣∣∣ (x1, ..., xN) ∈ Γ

}
.

Then the following assertions are equivalent:

(i) There exist 1 ≤ i0 ≤ N such that Ai0 is maximally monotone;

(ii) There exist 1 ≤ i0 ≤ N such that Ai0 = ∂fi0;

(iii) Ai = ∂fi for each 1 ≤ i ≤ N ;

(iv) Proxf1 + · · ·+ ProxfN = Id where Id(x) = x;

(v) ef∗1 + · · ·+ ef∗N = q where q(x) = 1
2
|x|2 and ef = f�q;

(vi) Γ + ∆⊥ = HN ;

(vii) S(Γ) = H.

In this case, (f1, . . . , fN) is a c-conjugate tuple, and Γ determines (f1, . . . , fN)

uniquely up to an additive constant tuple (ρ1, . . . , ρN) such that
∑N

i=1 ρi = 0.

Here (iv) represents the partition of the identity into a sum of firmly non-

expansive mappings, and (v) represents Moreau’s decomposition of the qua-

dratic function into envelopes in the multivariate settings, in which Proxf and
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ef are the proximal mapping and the Moreau envelope of f respectively; see

[2, 5] for more details. And ∆ =
{

(x, . . . , x)
∣∣x ∈ H} is the diagonal subspace

of HN . In addition, [2] shows Γ is maximally c-monotone (and, consequently,

maximally c-cyclically monotone) if any of the assertions (i)–(vii) hold.

In the bivariate case N = 2, if f1, f2 are biconjugate (f ∗1 = f2 and f ∗2 = f1),

then S(Γ) = H, hence the statements (i)–(vii) hold. Thus it is natural to ask

whether the multi-conjugacy of (f1, ..., fN) conversely yields the assertions as

well, in particular, (1.3). In this regard, [2] provides the following result.

Theorem 1.3 ([2]). Let n ∈ N, N = 3 and H = Rn. Let g, h : Rn →
]−∞,+∞] be proper, lower semicontinuous and convex functions. Suppose

that f = (g⊕ h)c (in particular if (f, g, h) is a c-conjugate triple) and that f

is essentially smooth. Let Γ be as in Theorem 1.2 generated by (f, g, h). Then

assertions (i)–(vii) in Theorem 1.2 hold and Γ is maximally c-monotone.

While Theorem 1.3 provides the first and affirmative answer toward the

converse of Theorem 1.2, it is limited in three aspects: H must be Euclidean,

N must be 3, and one of the c-conjugate convex functions needs to be smooth.

This paper will prove the converse for any N ∈ N and without smoothness

assumption on fi’s when the underlying space H is the real line. The author

hopes that this will contribute to a better understanding of multi-conjugate

convex functions and the maximal monotonicity of Γ (1.3) generated by them.

In order to better understand the fundamental relationship between multi-

convex conjugacy and maximal monotonicity, let us go back to the caseN = 2

where we observe that (1.3) is essentially a consequence of the following

fundamental statement

(1.5) f ∗∗ = f if and only if f is convex lower-semicontinuous on H.

This inspires us to find and prove an analogous statement for the multi-

variate case N ≥ 3. To this end, observe that if f and g are convex lower-

semicontinuous functions, (1.5) is equivalent to the following statement

(1.6) f ∗ = g implies g∗ = f.

(1.6) suggests that the multivariate version of (1.5) could be stated as follows.
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Definition 1.4 (Completeness of convex conjugation). We say that a real

Hilbert space H is complete in convex conjugation if for any N ∈ N and for

any convex, lower semicontinuous and proper functions {fi}i=1,...,N on H,

satisfying

(1.7) fi(xi) =
(⊕

j 6=i

fj

)c
(xi) for every i = 2, ..., N,

it holds that (f1, . . . , fN) is a c-conjugate tuple, that is, f1 also satisfies

(1.8) f1(x1) =
(⊕
j 6=1

fj

)c
(x1).

In essence, this paper shows that the converse of Theorem 1.2 holds if H is

complete in convex conjugation, and that the real line R is indeed complete;

see Proposition 2.4, Theorem 2.6, and the remarks that follow.

1.1. Connection with theory of multi-marginal optimal transport.

Let (X1, µ1), . . . , (XN , µN) be Borel probability spaces, and X := X1× · · · ×
XN . Denote Π(X) by the set of all Borel probability measures π on X whose

marginals are the µi’s [29, 30]. Given a cost function c : X → R, the optimal

transport problem refers to the following optimization problem:

(1.9) Pc := min
π∈Π(X)

∫
X

c(x)dπ(x).

To distinguish it from the two-marginal case, the problem is commonly re-

ferred to as multi-marginal optimal transport when N ≥ 3. In this problem,

the optimal transport cost Pc, as well as the geometry and structure of opti-

mal transport plans – the solutions to (1.9) – are sought.

Because (1.9) is an infinite-dimensional linear programming problem, it

has a dual problem whose formulation turns out to have the following form:

(1.10) Dc := max
fi ∈ L1(µi),∑

1≤i≤N fi(xi) ≤ c(x)

∑
1≤i≤N

∫
Xi

fi(xi)dµi(xi).

Kellerer’s [13] generalization of the Kantorovich duality states that, under

mild assumptions on the marginals µ1, ..., µN and cost function c, it holds

(1.11) Pc = Dc.
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This has the important implication that every optimal transport π solving

(1.9) is concentrated on the contact set

(1.12) Γ =

{
x ∈ X

∣∣∣∣ ∑
1≤i≤N

fi(xi) = c(x)

}
where (f1, . . . , fN) is a solution to the dual problem (1.10). This provides a

critical foundation for investigating the geometry of optimal transport plans.

The interaction between the optimal transport and its dual problems is

what makes the theory surprisingly powerful for many applications in fields

such as analysis, geometry, PDEs, probability, statistics, economics, data

sciences, and many researchers have helped to advance the field [10, 12, 20, 25,

26, 29, 30]. Regarding the geometry of optimal transport for N = 2, arguably

one of the most well-known and widely applied result is the Brenier’s theorem

[6]: given marginals µ1, µ2 ∈ P2(Rn) and cost function c(x1, x2) = |x1 − x2|2,

there is a convex function ϕ such that for any solution π to (1.9), it holds

(1.13) y ∈ ∂ϕ(x) π − a.e. (x, y), moreover, y = ∇ϕ(x) if µ1 has density.

Because the geometry of the subdifferential ∂ϕ is well understood by studies

in convex analysis, Brenier’s theorem could yield important further results.

Likewise, a better understanding of multivariate convex analysis should also

have a significant impact on the theory of multi-marginal optimal transporta-

tions, their geometry, and applications. This is a motivation of this paper.

Recent advances in the theory of multi-marginal optimal transport and its

geometrical structures have been rapid and fruitful, yielding a plethora of

further research directions and open problems [1–4, 7–11, 14–16, 18, 19, 21–

24]. In light of two-marginal optimal transport theory, Brenier’s theorem and

their consequences, it is clear that understanding the geometry of the contact

set (1.12) is critical, much of which falls within the scope of the multivariate

convex analysis. Given that most practical and relevant problems frequently

involve real-valued random variables with marginal distributions on the real

line, the author hopes that this paper will contribute to better understanding

of the geometry of multi-marginal optimal transport in this case.
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2. Results

In the sequel, lsc stands for “lower semi-continuous”. And q(x) := 1
2
|x|2.

Lemma 2.1. Let f, g, h be proper functions, satisfying

f(x) = sup
y∈dom g

h(x+ y)− g(y).

If h is lsc and λ-strongly convex, i.e., h− λq is convex, then so is f .

Proof. Let k = h− λq, which is convex lsc. Hence k = k∗∗. We calculate

f(x) = sup
y∈dom g

h(x+ y)− g(y)

= sup
y∈dom g

sup
z∈dom k∗

λq(x+ y) + 〈x+ y, z〉 − k∗(z)− g(y)

= λq(x) + sup
z∈dom k∗

{
〈x, z〉 − k∗(z) + sup

y∈dom g
{〈y, λx+ z〉 − (g − λq)(y)}

}
= λq(x) + sup

z∈dom k∗
〈x, z〉 − k∗(z) + (g − λq)∗(λx+ z)

=: λq(x) + ξ(x).

Observe that as a supremum of convex lsc functions, ξ is convex lsc. �

Recall that ∆ = {(x, x, ..., x) ∈ HN} denote the diagonal subspace of HN .

Definition 2.2 (∆-convex envelope). Let x = (x1, ..., xN) ∈ HN , S(x) =∑N
i=1 xi. Let f : HN → ]−∞,+∞] be proper, satisfying f(x) ≥ 〈S(x), y〉+ b

for some y ∈ H, b ∈ R. Then g is called the ∆- convex envelope of f if g is

the largest convex lsc function on H satisfying f(x) ≥ g(S(x)).

Lemma 2.3. Let f satisfy the condition in Definition 2.2. Then g is the

∆-convex envelope of f if and only if g∗(y) = supx〈S(x), y〉 − f(x).

Proof. Let h be any convex lsc function. The following equivalence

f(x) ≥ h(S(x)) for every x ∈ HN

⇐⇒ f(x) ≥ 〈S(x), y〉 − h∗(y) for every x ∈ HN , y ∈ H

⇐⇒ h∗(y) ≥ sup
x
〈S(x), y〉 − f(x) for every y ∈ H

along with the fact that maximality of g corresponds to minimality of g∗

yields the lemma. �
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Proposition 2.4. Let f, g, h be convex, lower-semicontinuous and proper

functions on R. Assume that (f, g) are h-conjugate, that is

(2.1) f(x) = sup
y
{h(x+ y)− g(y)}, g(y) = sup

x
{h(x+ y)− f(x)}.

Assume further that f and h are continuous, and h is λ-strongly convex for

some λ > 0. Then h is the ∆-convex envelope of f ⊕ g(x, y) := f(x) + g(y).

Proof. By Lemma 2.1, f and g are λ- stongly convex. In particular,
⋃
x∈R ∂f(x) =⋃

y∈R ∂g(y) = R. Firstly, we claim that the following set I is dense in R:

I = {s ∈ R | s = x+ y such that ∂f(x) ∩ ∂g(y) 6= ∅, and(2.2)

either f is differentiable at x or g is differentiable at y}.

Let us prove the claim later. Let H denote the ∆-convex envelope of f ⊕ g.

Then H ≥ h since f(x) + g(y) ≥ h(x + y) by (2.1). The proposition asserts

H = h. To prove this, we claim that it is sufficient to prove the following

tightness: For any x0, y0 ∈ R such that ∂f(x0) ∩ ∂g(y0) 6= ∅ and either f is

differentiable at x0 or g is differentiable at y0, we have

f(x0) + g(y0) = h(x0 + y0).(2.3)

The sufficiency is because (2.3) implies H = h on I, and thus for any s ∈ R,

by the first claim, there exists a sequence sn in I such that lim sn = s, and

H(s) ≤ lim inf H(sn) = lim inf h(sn) = h(s)

as desired, thanks to the continuity of h.

Now to verify (2.3), by translation, we may assume without loss of gener-

ality that x0 = y0 = 0. Moreover we may assume that 0 ∈ ∂f(0) ∩ ∂g(0). To

see why this can be assumed, let a ∈ ∂f(0)∩ ∂g(0). Consider f̃(x) = f(x)−
〈a, x〉−f(0), g̃(y) = g(y)−〈a, y〉−g(0), and h̃(z) = h(z)−〈a, z〉−f(0)−g(0).

Then f and g are h-conjugate if and only if f̃ and g̃ are h̃-conjugate. And

since min f̃ = f̃(0) = 0 and min g̃ = g̃(0) = 0, (2.3) holds if and only if

h̃(0) = 0. Our discussion so far indicates that it is sufficient to prove the

claim (2.3) under the assumption that x0 = y0 = 0, f and g are h-conjugate,

f(0) = 0 = min f , g(0) = 0 = min g, and either f or g is differentiable at 0;

and the goal is to show that h(0) = 0.
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Now to derive a contradiction, suppose h(0) < 0, so that m = minh < 0.

Assume f is differentiable at 0 (the proof will be the same in the case g is

differentiable at 0, by switching the role of f and g). Let K = {x | h(x) ≤
m/2}. Since h is strongly convex, there exists δ > 0 such that

(2.4) x ∈ R \K and z ∈ ∂h(x) implies |z| ≥ δ.

By (2.1), given ε > 0, there exists yε such that −ε < h(yε)−g(yε) ≤ 0 = f(0).

Now f(x) ≥ h(x + yε) − g(yε) for all x and ∇f(0) = 0 imply that for all

sufficiently small ε, we must have yε ∈ K by (2.4). However, we then have

−ε < h(yε)− g(yε) ≤ h(yε) ≤ m/2,

a contradiction for small ε.

It remains to prove the denseness of I. For any s ∈ R, recall that there

exists x, y ∈ R such that s ∈ ∂f(x) ∩ ∂g(y). By translation and subtracting

affine functions as before, we may assume 0 ∈ ∂f(0) ∩ ∂g(0). Then notice

the desired denseness will follow if we can show that for any r > 0, there

exists x, y ∈ R such that |x| < r, |y| < r, ∂f(x) ∩ ∂g(y) 6= ∅, and either f is

differentiable at x or g is differentiable at y.

Now to show the claim, assume that neither f nor g is differentiable at 0,

since otherwise there is nothing to prove. ∂f(0) is a compact interval, say

[a, b], since f is continuous. And W := ∂g((−r, r)) is an open interval since g

is strongly convex, thus g∗ is differentiable and ∂g∗ = (∂g)−1 is continuous.

Suppose b ∈ W . Then for any ε > 0, there exists x ∈ [0, ε) such that f is

differentiable at x and ∇f(x) ∈ [b, b + ε) since f is differentiable a.e.. Thus

∇f(x) ∈ W for small ε, and this implies ∇f(x) ∈ ∂g(y) for some y ∈ (−r, r),
proving the claim. Likewise, the claim holds in the case a ∈ W . Finally, if

{a, b}∩W = ∅, then W ⊆ (a, b), yielding that g is Lipschitz in (−r, r). By the

same argument using g, we find that ∇g(y) ∈ ∂f(x) for some x, y ∈ (−r, r).
This proves the desired denseness of I in R, hence the proposition. �

Remark 2.5. The above proof shows that Proposition 2.4 will continue to

hold for functions defined on a general Hilbert space H if the corresponding

set I is dense in H given the mutual conjugacy (2.1).
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Theorem 2.6. Let c : RN → R be given by (1.4). For 1 ≤ i ≤ N , let fi be

convex, lower semicontinuous and proper functions defined on R, satisfying

(2.5) fi(xi) =
(⊕

j 6=i

fj

)c
(xi) for every i = 2, ..., N.

Then (f1, . . . , fN) is a c-conjugate tuple, that is, f1 also satisfies

(2.6) f1(x1) =
(⊕
j 6=1

fj

)c
(x1).

In this case, the contact set

Γ =

{
x ∈ RN

∣∣∣∣ N∑
j=1

fj(xj) = c(x)

}
is maximally c-monotone, in the sense that

(2.7) S(Γ) = R.

In particular, the assertions (i)–(vii) in Theorem 1.2 hold true if H = R.

Proof. If N = 2, (2.6) is equivalent to the well-known statement f ∗∗ = f

if and only if f is convex lsc. And (2.7) is also well known; Rockafellar [27]

showed the subdifferential of a lower semicontinuous proper convex function

is a maximal monotone operator, and Minty showed (see [5, Theorem 21.1])

an operator A is maximally monotone if and only if ran(Id +A) = H.

When H = R, we will first extend these results (2.6), (2.7) for the case

N = 3. However, since most of the proof presented below will be valid for

general Hilbert space H, in the sequel, we will denote H (rather than R) by

the underlying space, though we will assume H = R (see also Remark 2.7).

To begin, we have f(x) + g(y) + h(z) ≥ 〈x, y〉+ 〈y, z〉+ 〈z, x〉, hence

(2.8) ϕ(x, y) := f(x) + g(y)− 〈x, y〉 ≥ h∗(x+ y).

We will show h∗ is the ∆-convex envelope of ϕ. Notice (2.8) is equivalent to

(2.9) F (x) +G(y) ≥ H(x+ y)



MULTI-CONJUGATE CONVEX FUNCTIONS ON THE LINE 11

where F = f + q, G = g + q, H = h∗ + q, and q(s) = 1
2
|s|2. Observe that the

conjugacy assumption (2.5), which reads

f(x) = sup
y
{h∗(x+ y) + 〈x, y〉 − g(y)}, g(y) = sup

x
{h∗(x+ y) + 〈x, y〉 − f(x)}

implies that F and G are also H-conjugate, that is

F (x) = sup
y
{H(x+ y)−G(y)} and G(y) = sup

x
{H(x+ y)− F (x)}.

We claim that H(x+y) is the ∆-convex envelope of F (x)+G(y). Observe that

this implies (2.6) for N = 3, because if H(x+ y) is the ∆-convex envelope of

F (x)+G(y), then h∗(x+y) must be the ∆-convex envelope of ϕ(x, y) due to

the equivalence of (2.8) and (2.9). But this precisely means that h = (f ⊕g)c

by Lemma 2.3, as desired.

Then as argued in the proof of Proposition 2.4, it is sufficient to prove

the claim under the assumption that F and G are H-conjugate, F (0) = 0 =

minF , G(0) = 0 = minG, and the goal is to show H(0) = 0 = minH.

To this end, for each R > 0, define

GR(y) = G(y) if |y| ≤ R, GR(y) = +∞ if |y| > R,

h∗R(x) = sup
|y|≤R
〈x, y〉 − h(y), HR = h∗R + q,

FR(x) = sup
y
{HR(x+ y)−GR(y)},

FH
R (y) = sup

x
{HR(x+ y)− FR(x)},

KR(y) = sup
x
{HR(x+ y)− F (x)}.

Assume that R is large enough such that minGR = minG. We observe

h∗R has Lipschitz constant at most R,(2.10)

FR is locally Lipschitz and monotone increasing to F as R→∞,(2.11)

FH
R converges pointwise to G.(2.12)

(2.11) is because HR and −GR monotonically increase in R, and FR is locally

Lipschitz because the supremum defining FR is taken over |y| ≤ R only. And

(2.12) is because GR ≥ FH
R ≥ KR, GR decreases to G, and KR increases to G
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in R. Now since FR and FH
R are HR-conjugate, by Proposition 2.4, we have

(2.13) HR(x+ y) is the ∆-convex envelope of FR(x) + FH
R (y).

Recall that our goal is to show minH = minF + minG. It is clear that

minH ≤ minF + minG. To show the reverse, since HR ≤ H and minHR =

minFR + minFH
R by (2.13), and also GR ≥ FH

R ≥ KR, it is enough to show

(2.14) minFR ↗ minF and minKR ↗ minG as R→∞.

minF = F (0) = 0 and the fact that F is of the form F = f+q implies F ≥ q,

thus F ∗ ≤ q. Since FR is increasing to F , F ∗R is decreasing in R bounded

below by F ∗. Let F∞ denote the limit of F ∗R. We claim that F∞ = F ∗. To

see this, note that F∞ is convex as a limit of convex functions, and it is

real-valued, i.e., domF∞ = H. Meanwhile, F ∗ = (F∞)∗∗ by [5, Proposition

13.47]. Now if H is Euclidean, i.e., H = Rn, then F∞ is continuous, yielding

F∞ = (F∞)∗∗ = F ∗ as claimed. This implies in particular,

minF = −F ∗(0) = −F∞(0) = − lim
R→∞

F ∗R(0) = lim
R→∞

minFR.

Similarly, minKR ↗ minG. This proves minH = H(0) = 0, and thus (2.6).

Now to prove (2.7), fix any s ∈ H. By (2.7) holding for N = 2, there exists

z ∈ H such that h(z) + h∗(s − z) = 〈z, s − z〉. This yields z ∈ ∂h∗(s − z),

implying s ∈ ∂H(s− z). Since F,G,H are of the form F = f + q, G = g+ q,

H = h∗ + q, there exist unique x, y, u ∈ H such that s ∈ ∂F (x) ∩ ∂G(y) ∩
∂H(u). Our previous proof yields F (x)+G(y) = H(x+y) and s ∈ ∂H(x+y).

Then the uniqueness of u implies s− z = x+ y, or s = x+ y + z. Finally,

F (x) +G(y) = H(x+ y)

⇐⇒ f(x) + g(y) = h∗(x+ y) + 〈x, y〉

⇐⇒ f(x) + g(y) = h∗(s− z) + 〈x, y〉

⇐⇒ f(x) + g(y) = 〈z, s− z〉 − h(z) + 〈x, y〉

⇐⇒ f(x) + g(y) + h(z) = 〈x, y〉+ 〈y, z〉+ 〈z, x〉.

This proves the maximality (2.7), hence the theorem for N = 3.
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From now on, we extend the proof for N ≥ 4. We proceed by an induction

on N . Suppose the theorem holds for N − 1. Define

x̃ = (x3, ..., xN), S(x̃) =
N∑
i=3

xi, c(x̃) =
∑

3≤i<j≤N

〈xi, xj〉,

ψ(x̃) =
N∑
i=3

fi(xi)− c(x̃), ϕ(x1, x2) = f1(x1) + f2(x2)− 〈x1, x2〉,

g = (f1 ⊕ f2)c, i.e., g(y) = sup
x1,x2

{
〈y, x1 + x2〉 − ϕ(x1, x2)

}
.

From the inequality
∑N

i=1 fi(xi) ≥ c(x), we have

ψ(x̃) ≥ g
(
S(x̃)

)
= sup

x1,x2

{
〈S(x̃), x1 + x2〉 − ϕ(x1, x2)

}
.(2.15)

Now comes the crux of the observation: (2.15), the induction hypothesis, and

the conjugacy (2.5) (i.e., each of the f3, ..., fN is the smallest convex function

satisfying (2.15) given others) combine to imply that

(f3, ..., fN , g
∗) are c(x̃, y)− conjugate, where c(x̃, y) = c(x̃) + 〈S(x̃), y〉.

In other words, g
(
S(x̃)

)
is the ∆-convex envelope of ψ(x̃), by Lemma 2.3.

This in turn implies f2 = (f1 ⊕ g)c, because

f2(x2) =
(⊕
j 6=2

fj

)c
(x2)

= sup
x1,x̃

{
〈x1, x2〉+ 〈x1 + x2, S(x̃)〉 − f1(x1)− ψ(x̃)

}
= sup

x1

{
〈x1, x2〉 − f1(x1) + sup

x̃
{〈x1 + x2, S(x̃)〉 − ψ(x̃)}

}
= sup

x1,y

{
〈x1, x2〉 − f1(x1) + 〈x1 + x2, y〉 − g(y)

}
= sup

x1,y

{
〈x2, x1 + y〉 − (f1(x1) + g(y)− 〈x1, y〉)

}
= (f1 ⊕ g)c(x2)

where the fourth equality is because g is the ∆-convex envelope of ψ. The

induction hypothesis (or the theorem we established for N = 3) now implies

f1 = (f2 ⊕ g)c =
(⊕
j 6=1

fj

)c
(x1)
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by an analogous calculation given above. This completes the proof of (2.6).

Finally, we establish the maximality S(Γ) = H. Recall (2.15), that is

ψ(x̃) ≥ g(S(x̃)) ≥ 〈y, S(x̃)〉 − g∗(y) for every x3, ..., xN , y.

Fix any s ∈ H. By the conjugacy of (f3, ..., fN , g
∗) and the induction hypoth-

esis on the maximality, there exists x̃s = (x̃s3, ..., x̃
s
N) such that

(2.16) ψ(x̃s) = g(S(x̃s)) = 〈s− S(x̃s), S(x̃s)〉 − g∗(s− S(x̃s)).

Similarly, the conjugacy of (f1, f2, g) yields

ϕ(x1, x2) ≥ g∗(x1 + x2) ≥ 〈z, x1 + x2〉 − g(z) for every x1, x2, z,

and for the same s, there exists xs1, x
s
2 ∈ H such that

(2.17) ϕ(xs1, x
s
2) = g∗(xs1 + xs2) = 〈s− xs1 − xs2, xs1 + xs2〉 − g(s− xs1 − xs2).

However, the pair u, v ∈ H that satisfies u+ v = s and g(u) + g∗(v) = 〈u, v〉
is unique. Hence (2.16), (2.17) implies S(x̃s) = s− xs1 − xs2, or s =

∑N
i=1 x

s
i .

From this identity, by adding the identities (2.16), (2.17), we obtain

ϕ(xs1, x
s
2) + ψ(x̃s) = 〈S(x̃s), xs1 + xs2〉

⇐⇒ (xs1, ..., x
s
N) ∈ Γ =

{
x

∣∣∣∣ N∑
j=1

fj(xj) = c(x)

}
.

This completes the proof of the theorem. �

Remark 2.7. As demonstrated by its proof, Theorem 2.6 holds true for a

general Hilbert space domain H if two points can also be verified on the same

domain: the first and most important is Proposition 2.4. The second is the

lower-semicontinuity of the function F∞ = limR→∞ F
∗
R, which was shown to

be continuous when H = Rn in the proof of Theorem 2.6. Thus, if both claims

are shown to be true for H, then Theorem 2.6 is also true for H. Alternatively,

if Proposition 2.4 is verified for Rn, Theorem 2.6 is also verified for Rn. We

also demonstrated that Proposition 2.4 holds true if the set I in (2.2) is shown

to be dense in H, for which the conjugacy condition (2.1) must be critical.
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